Cargando…
Electrochemical Capillary Driven Immunoassay for Detection of SARS-CoV-2
[Image: see text] The COVID-19 pandemic focused attention on a pressing need for fast, accurate, and low-cost diagnostic tests. This work presents an electrochemical capillary driven immunoassay (eCaDI) developed to detect SARS-CoV-2 nucleocapsid (N) protein. The low-cost flow device is made of poly...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469961/ https://www.ncbi.nlm.nih.gov/pubmed/36570470 http://dx.doi.org/10.1021/acsmeasuresciau.2c00037 |
Sumario: | [Image: see text] The COVID-19 pandemic focused attention on a pressing need for fast, accurate, and low-cost diagnostic tests. This work presents an electrochemical capillary driven immunoassay (eCaDI) developed to detect SARS-CoV-2 nucleocapsid (N) protein. The low-cost flow device is made of polyethylene terephthalate (PET) and adhesive films. Upon addition of a sample, reagents and washes are sequentially delivered to an integrated screen-printed carbon electrode for detection, thus automating a full sandwich immunoassay with a single end-user step. The modified electrodes are sensitive and selective for SARS-CoV-2 N protein and stable for over 7 weeks. The eCaDI was tested with influenza A and Sindbis virus and proved to be selective. The eCaDI was also successfully applied to detect nine different SARS-CoV-2 variants, including Omicron. |
---|