Cargando…
A Framework on Performance Analysis of Mathematical Model-Based Classifiers in Detection of Epileptic Seizure from EEG Signals with Efficient Feature Selection
Epilepsy is one of the neurological conditions that are diagnosed in the vast majority of patients. Electroencephalography (EEG) readings are the primary tool that is used in the process of diagnosing and analyzing epilepsy. The epileptic EEG data display the electrical activity of the neurons and p...
Autores principales: | Hemachandira, V. S., Viswanathan, R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470336/ https://www.ncbi.nlm.nih.gov/pubmed/36110984 http://dx.doi.org/10.1155/2022/7654666 |
Ejemplares similares
-
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023) -
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015) -
Evaluation of Feature Selection Methods for Classification of Epileptic Seizure EEG Signals
por: Sánchez-Hernández, Sergio E., et al.
Publicado: (2022) -
A Shallow Autoencoder Framework for Epileptic Seizure Detection in EEG Signals
por: Khan, Gul Hameed, et al.
Publicado: (2023) -
A DM-ELM based classifier for EEG brain signal classification for epileptic seizure detection
por: Mishra, Shruti, et al.
Publicado: (2022)