Cargando…
Shale gas geological “sweet spot” parameter prediction method and its application based on convolutional neural network
Parameters such as gas content (GAS), porosity (PHI) and total organic carbon (TOC) are key parameters that reveal the shale gas geological “sweet spot” of reservoirs. However, the lack of a three-dimensional high-precision prediction method is not conducive to large-scale exploration of shale gas....
Autores principales: | Qin, Zhengye, Xu, Tianji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470566/ https://www.ncbi.nlm.nih.gov/pubmed/36100638 http://dx.doi.org/10.1038/s41598-022-19711-6 |
Ejemplares similares
-
Geochemical and Geological Characteristics of the
Upper Ordovician–Lower Silurian Shales in the Upper Yangtze
Basin, South China: Implication for the Shale Gas Exploration
por: Sun, Yuan-Yuan, et al.
Publicado: (2020) -
Inadequate Regulation of the Geological Aspects of Shale Exploitation in the UK
por: Smythe, David K.
Publicado: (2020) -
Automated detection of geological landforms on Mars using Convolutional Neural Networks
por: Palafox, Leon F., et al.
Publicado: (2017) -
Elasticity and Characteristic Stress Thresholds of Shale under Deep In Situ Geological Conditions
por: Nie, Xiaofang, et al.
Publicado: (2023) -
Convolutional neural networks in the qualitative improvement of sweet potato roots
por: Clara Gonçalves Fernandes, Ana, et al.
Publicado: (2023)