Cargando…
An xception model based on residual attention mechanism for the classification of benign and malignant gastric ulcers
To explore the application value of convolutional neural network combined with residual attention mechanism and Xception model for automatic classification of benign and malignant gastric ulcer lesions in common digestive endoscopy images under the condition of insufficient data. For the problems of...
Autores principales: | Liu, Yixin, Zhang, Lihang, Hao, Zezhou, Yang, Ziyuan, Wang, Shanjuan, Zhou, Xiaoguang, Chang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470570/ https://www.ncbi.nlm.nih.gov/pubmed/36100650 http://dx.doi.org/10.1038/s41598-022-19639-x |
Ejemplares similares
-
L2MXception: an improved Xception network for classification of peach diseases
por: Yao, Na, et al.
Publicado: (2021) -
Deep Learning-Based Classification for Melanoma Detection Using XceptionNet
por: Lu, Xinrong, et al.
Publicado: (2022) -
Classification of large ornithopod dinosaur footprints using Xception transfer learning
por: Ha, Yeoncheol, et al.
Publicado: (2023) -
SBXception: A Shallower and Broader Xception Architecture for Efficient Classification of Skin Lesions
por: Mehmood, Abid, et al.
Publicado: (2023) -
High-Capacity Image Steganography Based on Improved Xception
por: Duan, Xintao, et al.
Publicado: (2020)