Cargando…
Performance comparison of three deep learning models for impacted mesiodens detection on periapical radiographs
This study aimed to develop deep learning models that automatically detect impacted mesiodens on periapical radiographs of primary and mixed dentition using the YOLOv3, RetinaNet, and EfficientDet-D3 algorithms and to compare their performance. Periapical radiographs of 600 pediatric patients (age r...
Autores principales: | Jeon, Kug Jin, Ha, Eun-Gyu, Choi, Hanseung, Lee, Chena, Han, Sang-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470664/ https://www.ncbi.nlm.nih.gov/pubmed/36100696 http://dx.doi.org/10.1038/s41598-022-19753-w |
Ejemplares similares
-
Automatic detection of mesiodens on panoramic radiographs using artificial intelligence
por: Ha, Eun-Gyu, et al.
Publicado: (2021) -
Quantitative localization of impacted mesiodens using panoramic and periapical radiographs
por: Choi, Hang-Moon, et al.
Publicado: (2011) -
Automatic diagnosis of retention pseudocyst in the maxillary sinus on panoramic radiographs using a convolutional neural network algorithm
por: Ha, Eun-Gyu, et al.
Publicado: (2023) -
Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images
por: Choi, Hanseung, et al.
Publicado: (2022) -
Automated Mesiodens Classification System Using Deep Learning on Panoramic Radiographs of Children
por: Ahn, Younghyun, et al.
Publicado: (2021)