Cargando…
ID-RDRL: a deep reinforcement learning-based feature selection intrusion detection model
Network assaults pose significant security concerns to network services; hence, new technical solutions must be used to enhance the efficacy of intrusion detection systems. Existing approaches pay insufficient attention to data preparation and inadequately identify unknown network threats. This pape...
Autores principales: | Ren, Kezhou, Zeng, Yifan, Cao, Zhiqin, Zhang, Yingchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470692/ https://www.ncbi.nlm.nih.gov/pubmed/36100644 http://dx.doi.org/10.1038/s41598-022-19366-3 |
Ejemplares similares
-
HDL-IDS: A Hybrid Deep Learning Architecture for Intrusion Detection in the Internet of Vehicles
por: Ullah, Safi, et al.
Publicado: (2022) -
Network intrusion detection using deep learning: a feature learning approach
por: Kim, Kwangjo, et al.
Publicado: (2018) -
Deep Stacking Network for Intrusion Detection
por: Tang, Yifan, et al.
Publicado: (2021) -
Apache Spark and Deep Learning Models for High-Performance Network Intrusion Detection Using CSE-CIC-IDS2018
por: Hagar, Abdulnaser A., et al.
Publicado: (2022) -
Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System
por: Henry, Azriel, et al.
Publicado: (2023)