Cargando…
Glucose derived carbon nanosphere (CSP) conjugated TTK21, an activator of the histone acetyltransferases CBP/p300, ameliorates amyloid‐beta 1–42 induced deficits in plasticity and associativity in hippocampal CA1 pyramidal neurons
The master epigenetic regulator lysine acetyltransferase (KAT) p300/CBP plays a pivotal role in neuroplasticity and cognitive functions. Recent evidence has shown that in several neurodegenerative diseases, including Alzheimer's disease (AD), the expression level and function of p300/CBP are se...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470894/ https://www.ncbi.nlm.nih.gov/pubmed/35962576 http://dx.doi.org/10.1111/acel.13675 |
Sumario: | The master epigenetic regulator lysine acetyltransferase (KAT) p300/CBP plays a pivotal role in neuroplasticity and cognitive functions. Recent evidence has shown that in several neurodegenerative diseases, including Alzheimer's disease (AD), the expression level and function of p300/CBP are severely compromised, leading to altered gene expression causing pathological conditions. Here, we show that p300/CBP activation by a small‐molecule TTK21, conjugated to carbon nanosphere (CSP) ameliorates Aβ‐impaired long‐term potentiation (LTP) induced by high‐frequency stimulation, theta burst stimulation, and synaptic tagging/capture (STC). This functional rescue was correlated with CSP‐TTK21‐induced changes in transcription and translation. Mechanistically, we observed that the expression of a large number of synaptic plasticity‐ and memory‐related genes was rescued, presumably by the restoration of p300/CBP mediated acetylation. Collectively, these results suggest that small‐molecule activators of p300/CBP could be a potential therapeutic molecule for neurodegenerative diseases like AD. |
---|