Cargando…

Conscious awareness of a visuo-proprioceptive mismatch: Effect on cross-sensory recalibration

The brain estimates hand position using vision and position sense (proprioception). The relationship between visual and proprioceptive estimates is somewhat flexible: visual information about the index finger can be spatially displaced from proprioceptive information, resulting in cross-sensory reca...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsiao, Anna, Lee-Miller, Trevor, Block, Hannah J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470947/
https://www.ncbi.nlm.nih.gov/pubmed/36117619
http://dx.doi.org/10.3389/fnins.2022.958513
Descripción
Sumario:The brain estimates hand position using vision and position sense (proprioception). The relationship between visual and proprioceptive estimates is somewhat flexible: visual information about the index finger can be spatially displaced from proprioceptive information, resulting in cross-sensory recalibration of the visual and proprioceptive unimodal position estimates. According to the causal inference framework, recalibration occurs when the unimodal estimates are attributed to a common cause and integrated. If separate causes are perceived, then recalibration should be reduced. Here we assessed visuo-proprioceptive recalibration in response to a gradual visuo-proprioceptive mismatch at the left index fingertip. Experiment 1 asked how frequently a 70 mm mismatch is consciously perceived compared to when no mismatch is present, and whether awareness is linked to reduced visuo-proprioceptive recalibration, consistent with causal inference predictions. However, conscious offset awareness occurred rarely. Experiment 2 tested a larger displacement, 140 mm, and asked participants about their perception more frequently, including at 70 mm. Experiment 3 confirmed that participants were unbiased at estimating distances in the 2D virtual reality display. Results suggest that conscious awareness of the mismatch was indeed linked to reduced cross-sensory recalibration as predicted by the causal inference framework, but this was clear only at higher mismatch magnitudes (70–140 mm). At smaller offsets (up to 70 mm), conscious perception of an offset may not override unconscious belief in a common cause, perhaps because the perceived offset magnitude is in range of participants’ natural sensory biases. These findings highlight the interaction of conscious awareness with multisensory processes in hand perception.