Cargando…

HGDiscovery: An online tool providing functional and phenotypic information on novel variants of homogentisate 1,2- dioxigenase

Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in the body. Affected individuals lack functional levels of an enzyme required to breakdown HGA. Mutations in the homogentisate 1,2-dioxygenase (HGD) gene cause AKU and they are responsible f...

Descripción completa

Detalles Bibliográficos
Autores principales: Karmakar, Malancha, Cicaloni, Vittoria, Rodrigues, Carlos H.M., Spiga, Ottavia, Santucci, Annalisa, Ascher, David B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471331/
https://www.ncbi.nlm.nih.gov/pubmed/36118553
http://dx.doi.org/10.1016/j.crstbi.2022.08.001
Descripción
Sumario:Alkaptonuria (AKU), a rare genetic disorder, is characterized by the accumulation of homogentisic acid (HGA) in the body. Affected individuals lack functional levels of an enzyme required to breakdown HGA. Mutations in the homogentisate 1,2-dioxygenase (HGD) gene cause AKU and they are responsible for deficient levels of functional HGD, which, in turn, leads to excess levels of HGA. Although HGA is rapidly cleared from the body by the kidneys, in the long term it starts accumulating in various tissues, especially cartilage. Over time (rarely before adulthood), it eventually changes the color of affected tissue to slate blue or black. Here we report a comprehensive mutation analysis of 111 pathogenic and 190 non-pathogenic HGD missense mutations using protein structural information. Using our comprehensive suite of graph-based signature methods, mCSM complemented with sequence-based tools, we studied the functional and molecular consequences of each mutation on protein stability, interaction and evolutionary conservation. The scores generated from the structure and sequence-based tools were used to train a supervised machine learning algorithm with 89% accuracy. The empirical classifier was used to generate the variant phenotype for novel HGD missense mutations. All this information is deployed as a user friendly freely available web server called HGDiscovery (https://biosig.lab.uq.edu.au/hgdiscovery/).