Cargando…
Analyzing Suicide Risk From Linguistic Features in Social Media: Evaluation Study
BACKGROUND: Effective suicide risk assessments and interventions are vital for suicide prevention. Although assessing such risks is best done by health care professionals, people experiencing suicidal ideation may not seek help. Hence, machine learning (ML) and computational linguistics can provide...
Autores principales: | Lao, Cecilia, Lane, Jo, Suominen, Hanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472054/ https://www.ncbi.nlm.nih.gov/pubmed/36040781 http://dx.doi.org/10.2196/35563 |
Ejemplares similares
-
Collecting and Analyzing Patient Experiences of Health Care From Social Media
por: Rastegar-Mojarad, Majid, et al.
Publicado: (2015) -
Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models
por: Aldhyani, Theyazn H. H., et al.
Publicado: (2022) -
Identifying Chinese Microblog Users With High Suicide Probability Using Internet-Based Profile and Linguistic Features: Classification Model
por: Guan, Li, et al.
Publicado: (2015) -
Social media and suicide prevention: findings from a stakeholder survey
por: ROBINSON, Jo, et al.
Publicado: (2015) -
Creating a Chinese suicide dictionary for identifying suicide risk on social media
por: Lv, Meizhen, et al.
Publicado: (2015)