Cargando…
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM
The constantly evolving human–machine interaction and advancement in sociotechnical systems have made it essential to analyze vital human factors such as mental workload, vigilance, fatigue, and stress by monitoring brain states for optimum performance and human safety. Similarly, brain signals have...
Autores principales: | Mughal, Nabeeha Ehsan, Khan, Muhammad Jawad, Khalil, Khurram, Javed, Kashif, Sajid, Hasan, Naseer, Noman, Ghafoor, Usman, Hong, Keum-Shik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472125/ https://www.ncbi.nlm.nih.gov/pubmed/36119719 http://dx.doi.org/10.3389/fnbot.2022.873239 |
Ejemplares similares
-
Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study
por: Khan, M. Jawad, et al.
Publicado: (2018) -
fNIRS-based brain-computer interfaces: a review
por: Naseer, Noman, et al.
Publicado: (2015) -
Corrigendum “fNIRS-based brain-computer interfaces: a review”
por: Naseer, Noman, et al.
Publicado: (2015) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018)