Cargando…

Preclinical characterization and clinical translation of pharmacodynamic markers for MK-5890: a human CD27 activating antibody for cancer immunotherapy

BACKGROUND: Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily t...

Descripción completa

Detalles Bibliográficos
Autores principales: Guelen, Lars, Fischmann, Thierry O, Wong, Jerelyn, Mauze, Smita, Guadagnoli, Marco, Bąbała, Nikolina, Wagenaars, Jozef, Juan, Veronica, Rosen, David, Prosise, Winnie, Habraken, Maurice, Lodewijks, Imke, Gu, Danling, Stammen-Vogelzangs, Judith, Yu, Ying, Baker, Jeanne, Lutje Hulsik, David, Driessen-Engels, Lilian, Malashock, Dan, Kreijtz, Joost, Bertens, Astrid, de Vries, Evert, Bovens, Astrid, Bramer, Arne, Zhang, Yiwei, Wnek, Richard, Troth, Sean, Chartash, Elliot, Dobrenkov, Konstantin, Sadekova, Svetlana, van Elsas, Andrea, Cheung, Jason K, Fayadat-Dilman, Laurence, Borst, Jannie, Beebe, Amy M, Van Eenennaam, Hans
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472132/
https://www.ncbi.nlm.nih.gov/pubmed/36100308
http://dx.doi.org/10.1136/jitc-2022-005049
Descripción
Sumario:BACKGROUND: Immune checkpoint inhibitors (ICI) have radically changed cancer therapy, but most patients with cancer are unresponsive or relapse after treatment. MK-5890 is a CD27 agonist antibody intended to complement ICI therapy. CD27 is a member of the tumor necrosis factor receptor superfamily that plays a critical role in promoting responses of T cells, B cells and NK cells. METHODS: Anti-CD27 antibodies were generated and selected for agonist activity using NF-кB luciferase reporter assays. Antibodies were humanized and characterized for agonism using in vitro T-cell proliferation assays. The epitope recognized on CD27 by MK-5890 was established by X-ray crystallography. Anti-tumor activity was evaluated in a human CD27 knock-in mouse. Preclinical safety was tested in rhesus monkeys. Pharmacodynamic properties were examined in mouse, rhesus monkeys and a phase 1 dose escalation clinical study in patients with cancer. RESULTS: Humanized anti-CD27 antibody MK-5890 (hIgG1) was shown to bind human CD27 on the cell surface with sub-nanomolar potency and to partially block binding to its ligand, CD70. Crystallization studies revealed that MK-5890 binds to a unique epitope in the cysteine-rich domain 1 (CRD1). MK-5890 activated CD27 expressed on 293T NF-κB luciferase reporter cells and, conditional on CD3 stimulation, in purified CD8+ T cells without the requirement of crosslinking. Functional Fc-receptor interaction was required to activate CD8+ T cells in an ex vivo tumor explant system and to induce antitumor efficacy in syngeneic murine subcutaneous tumor models. MK-5890 had monotherapy efficacy in these models and enhanced efficacy of PD-1 blockade. MK-5890 reduced in an isotype-dependent and dose-dependent manner circulating, but not tumor-infiltrating T-cell numbers in these mouse models. In rhesus monkey and human patients, reduction in circulating T cells was transient and less pronounced than in mouse. MK-5890 induced transient elevation of chemokines MCP-1, MIP-1α, and MIP-1β in the serum of mice, rhesus monkeys and patients with cancer. MK-5890 was well tolerated in rhesus monkeys and systemic exposure to MK-5890 was associated with CD27 occupancy at all doses. CONCLUSIONS: MK-5890 is a novel CD27 agonistic antibody with the potential to complement the activity of PD-1 checkpoint inhibition in cancer immunotherapy and is currently undergoing clinical evaluation.