Cargando…
Molecular Design Method Using a Reversible Tree Representation of Chemical Compounds and Deep Reinforcement Learning
[Image: see text] Automatic design of molecules with specific chemical and biochemical properties is an important process in material informatics and computational drug discovery. In this study, we designed a novel coarse-grained tree representation of molecules (Reversible Junction Tree; “RJT”) for...
Autores principales: | Ishitani, Ryuichiro, Kataoka, Toshiki, Rikimaru, Kentaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472278/ https://www.ncbi.nlm.nih.gov/pubmed/35960209 http://dx.doi.org/10.1021/acs.jcim.2c00366 |
Ejemplares similares
-
Molecular Design in Synthetically Accessible Chemical
Space via Deep Reinforcement Learning
por: Horwood, Julien, et al.
Publicado: (2020) -
Optimizing Chemical Reactions with Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2017) -
Molecular de-novo design through deep reinforcement learning
por: Olivecrona, Marcus, et al.
Publicado: (2017) -
Deep reinforcement learning for de novo drug design
por: Popova, Mariya, et al.
Publicado: (2018) -
Deep reinforcement learning for optimal experimental design in biology
por: Treloar, Neythen J., et al.
Publicado: (2022)