Cargando…

Performing a catalysis reaction on filter paper: development of a metal palladium nanoparticle-based catalyst

We report the polyethylenimine (PEI)-mediated immobilization of palladium nanoparticles (Pd NPs) onto filter paper for catalytic applications. In this work, filter paper was first assembled with PEI via electrostatic interaction, and the PEI-assembled filter paper was then complexed with PdCl(4)(2−)...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yili, Liu, Lei, Shi, Daniel, Shi, Xiangyang, Shen, Mingwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473204/
https://www.ncbi.nlm.nih.gov/pubmed/36132454
http://dx.doi.org/10.1039/c8na00095f
Descripción
Sumario:We report the polyethylenimine (PEI)-mediated immobilization of palladium nanoparticles (Pd NPs) onto filter paper for catalytic applications. In this work, filter paper was first assembled with PEI via electrostatic interaction, and the PEI-assembled filter paper was then complexed with PdCl(4)(2−) ions, followed by sodium borohydride reduction to generate Pd NP-immobilized filter paper. Transmission electron microscopy reveals that Pd NPs have a diameter of 3 nm and are capable of being immobilized onto the filter paper. The Pd NP-immobilized filter paper exhibits remarkable catalytic activity and is reusable in the reductive transformation of Cr(vi) to Cr(iii) and 4-nitrophenol to 4-aminophenol. The strategy used to develop Pd NP-immobilized filter paper could be adopted to generate other metal NP-immobilized filter papers for other applications such as sensing materials, energy, environmental remediation, and biomedical sciences.