Cargando…
Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors
High-quality graphene materials and high-performance graphene transistors have attracted much attention in recent years. To obtain high-performance graphene transistors, large single-crystal graphene is needed. The synthesis of large-domain-sized single-crystal graphene requires low nucleation densi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473297/ https://www.ncbi.nlm.nih.gov/pubmed/36133206 http://dx.doi.org/10.1039/c8na00203g |
_version_ | 1784789475364175872 |
---|---|
author | Gao, Xuedong Yu, Cui He, Zezhao Song, Xubo Liu, Qingbin Zhou, Chuangjie Guo, Jianchao Cai, Shujun Feng, Zhihong |
author_facet | Gao, Xuedong Yu, Cui He, Zezhao Song, Xubo Liu, Qingbin Zhou, Chuangjie Guo, Jianchao Cai, Shujun Feng, Zhihong |
author_sort | Gao, Xuedong |
collection | PubMed |
description | High-quality graphene materials and high-performance graphene transistors have attracted much attention in recent years. To obtain high-performance graphene transistors, large single-crystal graphene is needed. The synthesis of large-domain-sized single-crystal graphene requires low nucleation density; this can lead to a lower growth rate. In this study, a Ni-foam assisted structure was developed to control the nucleation density and growth rate of graphene by tuning the flow dynamics. Lower nucleation density and high growth rate (∼50 μm min(−1)) were achieved with a 4 mm-gap Ni foam. With the graphene transistor fabrication process, a pre-deposited Au film as the protective layer was used during the graphene transfer. Graphene transistors showed good current saturation with drain differential conductance as low as 0.04 S mm(−1) in the strong saturation region. For the devices with gate length of 2 μm, the intrinsic cut-off frequency f(T) and maximum oscillation frequency f(max) were 8.4 and 16.3 GHz, respectively, with f(max)/f(T) = 1.9 and power gain of up to 6.4 dB at 1 GHz. The electron velocity saturation induced by the surface optical phonons of SiO(2) substrates was analyzed. Electron velocity saturation and ultra-thin Al(2)O(3) gate dielectrics were thought to be the reasons for the good current saturation and high power gain of the graphene transistors. |
format | Online Article Text |
id | pubmed-9473297 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94732972022-09-20 Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors Gao, Xuedong Yu, Cui He, Zezhao Song, Xubo Liu, Qingbin Zhou, Chuangjie Guo, Jianchao Cai, Shujun Feng, Zhihong Nanoscale Adv Chemistry High-quality graphene materials and high-performance graphene transistors have attracted much attention in recent years. To obtain high-performance graphene transistors, large single-crystal graphene is needed. The synthesis of large-domain-sized single-crystal graphene requires low nucleation density; this can lead to a lower growth rate. In this study, a Ni-foam assisted structure was developed to control the nucleation density and growth rate of graphene by tuning the flow dynamics. Lower nucleation density and high growth rate (∼50 μm min(−1)) were achieved with a 4 mm-gap Ni foam. With the graphene transistor fabrication process, a pre-deposited Au film as the protective layer was used during the graphene transfer. Graphene transistors showed good current saturation with drain differential conductance as low as 0.04 S mm(−1) in the strong saturation region. For the devices with gate length of 2 μm, the intrinsic cut-off frequency f(T) and maximum oscillation frequency f(max) were 8.4 and 16.3 GHz, respectively, with f(max)/f(T) = 1.9 and power gain of up to 6.4 dB at 1 GHz. The electron velocity saturation induced by the surface optical phonons of SiO(2) substrates was analyzed. Electron velocity saturation and ultra-thin Al(2)O(3) gate dielectrics were thought to be the reasons for the good current saturation and high power gain of the graphene transistors. RSC 2018-12-13 /pmc/articles/PMC9473297/ /pubmed/36133206 http://dx.doi.org/10.1039/c8na00203g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Gao, Xuedong Yu, Cui He, Zezhao Song, Xubo Liu, Qingbin Zhou, Chuangjie Guo, Jianchao Cai, Shujun Feng, Zhihong Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors |
title | Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors |
title_full | Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors |
title_fullStr | Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors |
title_full_unstemmed | Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors |
title_short | Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors |
title_sort | growth of graphene with large single-crystal domains by ni foam-assisted structure and its high-gain field-effect transistors |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473297/ https://www.ncbi.nlm.nih.gov/pubmed/36133206 http://dx.doi.org/10.1039/c8na00203g |
work_keys_str_mv | AT gaoxuedong growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT yucui growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT hezezhao growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT songxubo growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT liuqingbin growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT zhouchuangjie growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT guojianchao growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT caishujun growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors AT fengzhihong growthofgraphenewithlargesinglecrystaldomainsbynifoamassistedstructureanditshighgainfieldeffecttransistors |