Cargando…
A graph representation of molecular ensembles for polymer property prediction
Synthetic polymers are versatile and widely used materials. Similar to small organic molecules, a large chemical space of such materials is hypothetically accessible. Computational property prediction and virtual screening can accelerate polymer design by prioritizing candidates expected to have fav...
Autores principales: | Aldeghi, Matteo, Coley, Connor W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473492/ https://www.ncbi.nlm.nih.gov/pubmed/36277616 http://dx.doi.org/10.1039/d2sc02839e |
Ejemplares similares
-
A focus on simulation and machine learning as complementary tools for chemical space navigation
por: Aldeghi, Matteo, et al.
Publicado: (2022) -
A graph-convolutional neural network model for the prediction of chemical reactivity
por: Coley, Connor W., et al.
Publicado: (2018) -
Analyzing Learned Molecular Representations for Property
Prediction
por: Yang, Kevin, et al.
Publicado: (2019) -
Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors
por: Guan, Yanfei, et al.
Publicado: (2020) -
Correction to Analyzing
Learned Molecular Representations
for Property Prediction
por: Yang, Kevin, et al.
Publicado: (2019)