Cargando…

Iron-catalysed alkene and heteroarene H/D exchange by reversible protonation of iron-hydride intermediates

C–H functionalisation reactions offer a sustainable method for molecular construction and diversification. These reactions however remain dominated by precious metal catalysis. While significant interest in iron-catalysed C–H activation reactions has emerged, the isolation, characterisation and mech...

Descripción completa

Detalles Bibliográficos
Autores principales: Britton, Luke, Docherty, Jamie H., Sklyaruk, Jan, Cooney, Jessica, Nichol, Gary S., Dominey, Andrew P., Thomas, Stephen P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473494/
https://www.ncbi.nlm.nih.gov/pubmed/36277640
http://dx.doi.org/10.1039/d2sc03802a
Descripción
Sumario:C–H functionalisation reactions offer a sustainable method for molecular construction and diversification. These reactions however remain dominated by precious metal catalysis. While significant interest in iron-catalysed C–H activation reactions has emerged, the isolation, characterisation and mechanistic understanding of these processes remain lacking. Herein the iron-catalysed C(sp(2))–H bond hydrogen/deuterium exchange reaction using CD(3)OD is reported for both heterocycles and, for the first time, alkenes (38 examples). Isolation and characterisation, including by single-crystal X-ray diffraction, of the key iron-aryl and iron-alkenyl C–H metallation intermediates provided evidence for a reversible protonation of the active iron hydride catalyst. Good chemoselectivity was observed for both substrate classes. The developed procedure is orthogonal to previous iron-catalysed H/D exchange methods which used C(6)D(6), D(2), or D(2)O as the deuterium source, and uses only bench-stable reagents, including the iron(ii) pre-catalyst. Further, a new mechanism of iron-hydride formation is reported in which β-hydride elimination from an alcohol generates the iron hydride. The ability to produce, isolate and characterise the organometallic products arising from C–H activation presents a basis for future discovery and development.