Cargando…
Observation of robust zero-energy state and enhanced superconducting gap in a trilayer heterostructure of MnTe/Bi(2)Te(3)/Fe(Te, Se)
The interface between magnetic material and superconductors has long been predicted to host unconventional superconductivity, such as spin-triplet pairing and topological nontrivial pairing state, particularly when spin-orbital coupling (SOC) is incorporated. To identify these unconventional pairing...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473575/ https://www.ncbi.nlm.nih.gov/pubmed/36103530 http://dx.doi.org/10.1126/sciadv.abq4578 |
Sumario: | The interface between magnetic material and superconductors has long been predicted to host unconventional superconductivity, such as spin-triplet pairing and topological nontrivial pairing state, particularly when spin-orbital coupling (SOC) is incorporated. To identify these unconventional pairing states, fabricating homogenous heterostructures that contain such various properties are preferred but often challenging. Here, we synthesized a trilayer-type van der Waals heterostructure of MnTe/Bi(2)Te(3)/Fe(Te, Se), which combined s-wave superconductivity, thickness-dependent magnetism, and strong SOC. Via low-temperature scanning tunneling microscopy, we observed robust zero-energy states with notably nontrivial properties and an enhanced superconducting gap size on single unit cell (UC) MnTe surface. In contrast, no zero-energy state was observed on 2-UC MnTe. First-principle calculations further suggest that the 1-UC MnTe has large interfacial Dzyaloshinskii-Moriya interaction and a frustrated AFM state, which could promote noncolinear spin textures. It thus provides a promising platform for exploring topological nontrivial superconductivity. |
---|