Cargando…
Organocopper(ii) complexes: new catalysts for carbon–carbon bond formation via electrochemical atom transfer radical addition (eATRA)
Organocopper(ii) complexes are a rarity while organocopper(i) complexes are commonplace in chemical synthesis. In the course of building a strategy to generate organocopper(ii) species utilizing electrochemistry, a method to form compounds with Cu(II)–C bonds was discovered, that demonstrated remark...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473645/ https://www.ncbi.nlm.nih.gov/pubmed/36277651 http://dx.doi.org/10.1039/d2sc03418b |
Sumario: | Organocopper(ii) complexes are a rarity while organocopper(i) complexes are commonplace in chemical synthesis. In the course of building a strategy to generate organocopper(ii) species utilizing electrochemistry, a method to form compounds with Cu(II)–C bonds was discovered, that demonstrated remarkably potent reactivity towards different functionalized alkenes under catalytic control. The role of the organocopper(ii) complex is to act as a source of masked radicals (in this case ˙CH(2)CN) that react with an alkene to generate the corresponding γ-halonitrile in good yields through atom transfer radical addition (ATRA) to various alkenes. The organocopper(ii) complexes can be continuously regenerated electrochemically for ATRA (eATRA), which proceeds at room temperature, under low Cu loadings (1–10 mol%) and with the possibility of Cu-catalyst recovery. |
---|