Cargando…
Brain atlas for glycoprotein hormone receptors at single-transcript level
There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain recepto...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473692/ https://www.ncbi.nlm.nih.gov/pubmed/36052994 http://dx.doi.org/10.7554/eLife.79612 |
_version_ | 1784789557803220992 |
---|---|
author | Ryu, Vitaly Gumerova, Anisa Korkmaz, Funda Kang, Seong Su Katsel, Pavel Miyashita, Sari Kannangara, Hasni Cullen, Liam Chan, Pokman Kuo, TanChun Padilla, Ashley Sultana, Farhath Wizman, Soleil A Kramskiy, Natan Zaidi, Samir Kim, Se-Min New, Maria I Rosen, Clifford J Goosens, Ki A Frolinger, Tal Haroutunian, Vahram Ye, Keqiang Lizneva, Daria Davies, Terry F Yuen, Tony Zaidi, Mone |
author_facet | Ryu, Vitaly Gumerova, Anisa Korkmaz, Funda Kang, Seong Su Katsel, Pavel Miyashita, Sari Kannangara, Hasni Cullen, Liam Chan, Pokman Kuo, TanChun Padilla, Ashley Sultana, Farhath Wizman, Soleil A Kramskiy, Natan Zaidi, Samir Kim, Se-Min New, Maria I Rosen, Clifford J Goosens, Ki A Frolinger, Tal Haroutunian, Vahram Ye, Keqiang Lizneva, Daria Davies, Terry F Yuen, Tony Zaidi, Mone |
author_sort | Ryu, Vitaly |
collection | PubMed |
description | There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region—with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain—both are Alzheimer’s disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies. |
format | Online Article Text |
id | pubmed-9473692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-94736922022-09-15 Brain atlas for glycoprotein hormone receptors at single-transcript level Ryu, Vitaly Gumerova, Anisa Korkmaz, Funda Kang, Seong Su Katsel, Pavel Miyashita, Sari Kannangara, Hasni Cullen, Liam Chan, Pokman Kuo, TanChun Padilla, Ashley Sultana, Farhath Wizman, Soleil A Kramskiy, Natan Zaidi, Samir Kim, Se-Min New, Maria I Rosen, Clifford J Goosens, Ki A Frolinger, Tal Haroutunian, Vahram Ye, Keqiang Lizneva, Daria Davies, Terry F Yuen, Tony Zaidi, Mone eLife Medicine There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR, and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and subnuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and subnuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1-positive neurons. In addition, we show high expression for all three receptors in the ventricular region—with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain—both are Alzheimer’s disease-vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies. eLife Sciences Publications, Ltd 2022-09-02 /pmc/articles/PMC9473692/ /pubmed/36052994 http://dx.doi.org/10.7554/eLife.79612 Text en © 2022, Ryu et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Medicine Ryu, Vitaly Gumerova, Anisa Korkmaz, Funda Kang, Seong Su Katsel, Pavel Miyashita, Sari Kannangara, Hasni Cullen, Liam Chan, Pokman Kuo, TanChun Padilla, Ashley Sultana, Farhath Wizman, Soleil A Kramskiy, Natan Zaidi, Samir Kim, Se-Min New, Maria I Rosen, Clifford J Goosens, Ki A Frolinger, Tal Haroutunian, Vahram Ye, Keqiang Lizneva, Daria Davies, Terry F Yuen, Tony Zaidi, Mone Brain atlas for glycoprotein hormone receptors at single-transcript level |
title | Brain atlas for glycoprotein hormone receptors at single-transcript level |
title_full | Brain atlas for glycoprotein hormone receptors at single-transcript level |
title_fullStr | Brain atlas for glycoprotein hormone receptors at single-transcript level |
title_full_unstemmed | Brain atlas for glycoprotein hormone receptors at single-transcript level |
title_short | Brain atlas for glycoprotein hormone receptors at single-transcript level |
title_sort | brain atlas for glycoprotein hormone receptors at single-transcript level |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473692/ https://www.ncbi.nlm.nih.gov/pubmed/36052994 http://dx.doi.org/10.7554/eLife.79612 |
work_keys_str_mv | AT ryuvitaly brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT gumerovaanisa brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT korkmazfunda brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT kangseongsu brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT katselpavel brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT miyashitasari brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT kannangarahasni brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT cullenliam brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT chanpokman brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT kuotanchun brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT padillaashley brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT sultanafarhath brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT wizmansoleila brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT kramskiynatan brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT zaidisamir brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT kimsemin brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT newmariai brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT rosencliffordj brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT goosenskia brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT frolingertal brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT haroutunianvahram brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT yekeqiang brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT liznevadaria brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT daviesterryf brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT yuentony brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel AT zaidimone brainatlasforglycoproteinhormonereceptorsatsingletranscriptlevel |