Cargando…
Approximating solutions of the Chemical Master equation using neural networks
The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474291/ https://www.ncbi.nlm.nih.gov/pubmed/36117994 http://dx.doi.org/10.1016/j.isci.2022.105010 |
_version_ | 1784789684319158272 |
---|---|
author | Sukys, Augustinas Öcal, Kaan Grima, Ramon |
author_facet | Sukys, Augustinas Öcal, Kaan Grima, Ramon |
author_sort | Sukys, Augustinas |
collection | PubMed |
description | The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the large number of simulations typically required can render the estimation of molecule number distributions and other quantities infeasible. In this article, we aim to leverage the representational power of neural networks to approximate the solutions of the CME and propose a framework for the Neural Estimation of Stochastic Simulations for Inference and Exploration (Nessie). Our approach is based on training neural networks to learn the distributions predicted by the CME from relatively few stochastic simulations. We show on biologically relevant examples that simple neural networks with one hidden layer can capture highly complex distributions across parameter space, thereby accelerating computationally intensive tasks such as parameter exploration and inference. |
format | Online Article Text |
id | pubmed-9474291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-94742912022-09-16 Approximating solutions of the Chemical Master equation using neural networks Sukys, Augustinas Öcal, Kaan Grima, Ramon iScience Article The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the large number of simulations typically required can render the estimation of molecule number distributions and other quantities infeasible. In this article, we aim to leverage the representational power of neural networks to approximate the solutions of the CME and propose a framework for the Neural Estimation of Stochastic Simulations for Inference and Exploration (Nessie). Our approach is based on training neural networks to learn the distributions predicted by the CME from relatively few stochastic simulations. We show on biologically relevant examples that simple neural networks with one hidden layer can capture highly complex distributions across parameter space, thereby accelerating computationally intensive tasks such as parameter exploration and inference. Elsevier 2022-08-27 /pmc/articles/PMC9474291/ /pubmed/36117994 http://dx.doi.org/10.1016/j.isci.2022.105010 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Sukys, Augustinas Öcal, Kaan Grima, Ramon Approximating solutions of the Chemical Master equation using neural networks |
title | Approximating solutions of the Chemical Master equation using neural networks |
title_full | Approximating solutions of the Chemical Master equation using neural networks |
title_fullStr | Approximating solutions of the Chemical Master equation using neural networks |
title_full_unstemmed | Approximating solutions of the Chemical Master equation using neural networks |
title_short | Approximating solutions of the Chemical Master equation using neural networks |
title_sort | approximating solutions of the chemical master equation using neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474291/ https://www.ncbi.nlm.nih.gov/pubmed/36117994 http://dx.doi.org/10.1016/j.isci.2022.105010 |
work_keys_str_mv | AT sukysaugustinas approximatingsolutionsofthechemicalmasterequationusingneuralnetworks AT ocalkaan approximatingsolutionsofthechemicalmasterequationusingneuralnetworks AT grimaramon approximatingsolutionsofthechemicalmasterequationusingneuralnetworks |