Cargando…
Approximating solutions of the Chemical Master equation using neural networks
The Chemical Master Equation (CME) provides an accurate description of stochastic biochemical reaction networks in well-mixed conditions, but it cannot be solved analytically for most systems of practical interest. Although Monte Carlo methods provide a principled means to probe system dynamics, the...
Autores principales: | Sukys, Augustinas, Öcal, Kaan, Grima, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474291/ https://www.ncbi.nlm.nih.gov/pubmed/36117994 http://dx.doi.org/10.1016/j.isci.2022.105010 |
Ejemplares similares
-
MomentClosure.jl: automated moment closure approximations in Julia
por: Sukys, Augustinas, et al.
Publicado: (2021) -
Solution of the chemical master equation by radial basis functions approximation with interface tracking
por: Kryven, Ivan, et al.
Publicado: (2015) -
Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains
por: Kazeev, Vladimir, et al.
Publicado: (2014) -
Delay chemical master equation: direct and closed-form solutions
por: Leier, Andre, et al.
Publicado: (2015) -
Approximate solution of operator equations
por: Krasnosel’skii, M A, et al.
Publicado: (1972)