Cargando…
Somatostatin receptor-directed molecular imaging for therapeutic decision-making in patients with medullary thyroid carcinoma
BACKGROUND: Somatostatin receptor (SSTR) positron emission tomography/computed tomography (PET/CT) is increasingly deployed in the diagnostic algorithm of patients affected with medullary thyroid carcinoma (MTC). We aimed to assess the role of SSTR-PET/CT for therapeutic decision making upon restagi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474330/ https://www.ncbi.nlm.nih.gov/pubmed/35751778 http://dx.doi.org/10.1007/s12020-022-03116-6 |
Sumario: | BACKGROUND: Somatostatin receptor (SSTR) positron emission tomography/computed tomography (PET/CT) is increasingly deployed in the diagnostic algorithm of patients affected with medullary thyroid carcinoma (MTC). We aimed to assess the role of SSTR-PET/CT for therapeutic decision making upon restaging. METHODS: 23 pretreated MTC patients underwent SSTR-PET/CT and were discussed in our interdisciplinary tumor board. Treatment plans were initiated based on scan results. By comparing the therapeutic regimen before and after the scan, we assessed the impact of molecular imaging on therapy decision. SSTR-PET was also compared to CT portion of the SSTR-PET/CT (as part of hybrid imaging). RESULTS: SSTR-PET/CT was superior in 9/23 (39.1%) subjects when compared to conventional CT and equivalent in 14/23 (60.9%). Those findings were further corroborated on a lesion-based level with 27/73 (37%) metastases identified only by functional imaging (equivalent to CT in the remaining 46/73 (63%)). Investigating therapeutic decision making, no change in treatment was initiated after PET/CT in 7/23 (30.4%) patients (tyrosine kinase inhibitor (TKI), 4/7 (57.2%); surveillance, 3/7 (42.8%)). Imaging altered therapy in the remaining 16/23 (69.6%). Treatment prior to PET/CT included surgery in 6/16 (37.5%) cases, followed by TKI in 4/16 (25%), active surveillance in 4/16 (25%), and radiation therapy (RTx) in 2/16 (12.5%) subjects. After SSTR-PET/CT, the therapeutic regimen was changed as follows: In the surgery group, 4/6 (66.7%) patients underwent additional surgery, and 1/6 (16.7%) underwent surveillance and TKI, respectively. In the TKI group, 3/4 (75%) individuals received another TKI and the remaining subject (1/4, 25%) underwent peptide receptor radionuclide therapy. In the surveillance group, 3/4 (75%) underwent surgery (1/4, (25%), RTx). In the RTx group, one patient was switched to TKI and another individual was actively monitored (1/2, 50%, respectively). Moreover, in the 16 patients in whom treatment was changed by molecular imaging, control disease rate was achieved in 12/16 (75%) during follow-up. CONCLUSIONS: In patients with MTC, SSTR-PET/CT was superior to CT alone and provided relevant support in therapeutic decision-making in more than two thirds of cases, with most patients being switched to surgical interventions or systemic treatment with TKI. As such, SSTR-PET/CT can guide the referring treating physician towards disease-directed treatment in various clinical scenarios. |
---|