Cargando…
SUFEMO: A superpixel based fuzzy image segmentation method for COVID-19 radiological image elucidation
COVID-19 causes an ongoing worldwide pandemic situation. The non-discovery of specialized drugs and/or any other kind of medicines makes the situation worse. Early diagnosis of this disease will be certainly helpful to start the treatment early and also to bring down the dire spread of this highly i...
Autores principales: | Chakraborty, Shouvik, Mali, Kalyani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474408/ https://www.ncbi.nlm.nih.gov/pubmed/36124000 http://dx.doi.org/10.1016/j.asoc.2022.109625 |
Ejemplares similares
-
SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
A morphology-based radiological image segmentation approach for efficient screening of COVID-19
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
SUFMACS: A machine learning-based robust image segmentation framework for COVID-19 radiological image interpretation
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
Fuzzy Electromagnetism Optimization (FEMO) and its application in biomedical image segmentation
por: Chakraborty, Shouvik, et al.
Publicado: (2020) -
A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach
por: Chakraborty, Shouvik, et al.
Publicado: (2022)