Cargando…

Optimising CT-guided biopsies of sclerotic bone lesions in cancer patients

OBJECTIVES: Investigate the laboratory, imaging and procedural factors that are associated with a tumour-positive and/or NGS-feasible CT-guided sclerotic bone lesion biopsy result in cancer patients. METHODS: In total, 113 CT-guided bone biopsies performed in cancer patients by an interventional rad...

Descripción completa

Detalles Bibliográficos
Autores principales: Donners, Ricardo, Fotiadis, Nicos, Figueiredo, Ines, Blackledge, Matthew, Westaby, Daniel, Guo, Christina, Fenor de la Maza, Maria de los Dolores, Koh, Dow-Mu, Tunariu, Nina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474436/
https://www.ncbi.nlm.nih.gov/pubmed/35881184
http://dx.doi.org/10.1007/s00330-022-09011-y
Descripción
Sumario:OBJECTIVES: Investigate the laboratory, imaging and procedural factors that are associated with a tumour-positive and/or NGS-feasible CT-guided sclerotic bone lesion biopsy result in cancer patients. METHODS: In total, 113 CT-guided bone biopsies performed in cancer patients by an interventional radiologist in one institution were retrospectively reviewed. Sixty-five sclerotic bone biopsies were eventually included and routine blood parameters and tumour marker levels were recorded. Non-contrast (NC) biopsy CTs (65), contrast-enhanced CTs (24), and PET/CTs (22) performed within four weeks of biopsy were reviewed; lesion location, diameter, lesion-to-cortex distance, and NC-CT appearance (dense-sclerosis versus mild-sclerosis) were noted. Mean NC-CT, CE-CT HU, and PET SUVmax were derived from biopsy tract and lesion segmentations. Needle diameter, tract length, and number of samples were noted. Comparisons between tumour-positive/negative and next-generation sequencing (NGS)-feasible/non-feasible biopsies determined significant (p < 0.05) laboratory, imaging, and procedural parameter differences. RESULTS: Seventy-four percent of biopsies were tumour-positive. NGS was feasible in 22/30 prostate cancer patients (73%). Neither laboratory blood parameters, PET/CT availability, size, nor lesion-to-cortex distance affected diagnostic yield or NGS feasibility (p > 0.298). Eighty-seven percent of mildly sclerotic bone (mean 244 HU) biopsies were positive compared with 56% in dense sclerosis (622 HU, p = 0.005) and NC-CT lesion HU was significantly lower in positive biopsies (p = 0.003). A 610 HU threshold yielded 89% PPV for tumour-positive biopsies and a 370 HU threshold 94% PPV for NGS-feasible biopsies. FDG-PET and procedural parameters were non-significant factors (each p > 0.055). CONCLUSION: In cancer patients with sclerotic bone disease, targeting areas of predominantly mild sclerosis in lower CT-attenuation lesions can improve tumour tissue yield and NGS feasibility. KEY POINTS: • Areas of predominantly mild sclerosis should be preferred to areas of predominantly dense sclerosis for CT-guided bone biopsies in cancer patients. • Among sclerotic bone lesions in prostate cancer patients, lesions with a mean HU below 370 should be preferred as biopsy targets to improve NGS feasibility. • Laboratory parameters and procedure related factors may have little implications for CT-guided sclerotic bone biopsy success.