Cargando…
Artificial intelligence-based diagnostics of molar-incisor-hypomineralization (MIH) on intraoral photographs
OBJECTIVE: The aim of this study was to develop and validate a deep learning–based convolutional neural network (CNN) for the automated detection and categorization of teeth affected by molar-incisor-hypomineralization (MIH) on intraoral photographs. MATERIALS AND METHODS: The data set consisted of...
Autores principales: | Schönewolf, Jule, Meyer, Ole, Engels, Paula, Schlickenrieder, Anne, Hickel, Reinhard, Gruhn, Volker, Hesenius, Marc, Kühnisch, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474479/ https://www.ncbi.nlm.nih.gov/pubmed/35608684 http://dx.doi.org/10.1007/s00784-022-04552-4 |
Ejemplares similares
-
Automatized Detection and Categorization of Fissure Sealants from Intraoral Digital Photographs Using Artificial Intelligence
por: Schlickenrieder, Anne, et al.
Publicado: (2021) -
Detection and localization of caries and hypomineralization on dental photographs with a vision transformer model
por: Felsch, Marco, et al.
Publicado: (2023) -
Hypersensitivity in teeth affected by molar-incisor hypomineralization (MIH)
por: Linner, Thomas, et al.
Publicado: (2021) -
Prevalence and etiology of molar-incisor hypomineralization (MIH) in the city of Istanbul
por: Koruyucu, Mine, et al.
Publicado: (2018) -
Caries Detection on Intraoral Images Using Artificial Intelligence
por: Kühnisch, J., et al.
Publicado: (2021)