Cargando…
Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases
The rapid development of space-time-coding metasurfaces (STCMs) offers a new avenue to manipulate spatial electromagnetic beams, waveforms, and frequency spectra simultaneously with high efficiency. To date, most studies are primarily focused on harmonic generations and independent controls of finit...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474547/ https://www.ncbi.nlm.nih.gov/pubmed/36104318 http://dx.doi.org/10.1038/s41377-022-00973-8 |
Sumario: | The rapid development of space-time-coding metasurfaces (STCMs) offers a new avenue to manipulate spatial electromagnetic beams, waveforms, and frequency spectra simultaneously with high efficiency. To date, most studies are primarily focused on harmonic generations and independent controls of finite-order harmonics and their spatial waves, but the manipulations of continuously temporal waveforms that include much rich frequency spectral components are still limited in both theory and experiment based on STCM. Here, we propose a theoretical framework and method to generate frequency-modulated continuous waves (FMCWs) and control their spatial propagation behaviors simultaneously via a novel STCM with nonlinearly periodic phases. Since the carrier frequency of FMCW changes with time rapidly, we can produce customized time-varying reflection phases at will by the required FMCW under the illumination of a monochromatic wave. More importantly, the propagation directions of the time-varying beams can be controlled by encoding the metasurface with different initial phase gradients. A programmable STCM prototype with a full-phase range is designed and fabricated to realize reprogrammable FMCW functions, and experimental results show good agreement with the theoretical analyses. |
---|