Cargando…

Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system

Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yan, Xu, Shuting, Xu, Zheqi, Tian, Jiamin, Bai, Mengmeng, Qi, Zhiying, Niu, Yue, Aung, Hein Htet, Xiong, Xiaolu, Han, Junfeng, Lu, Cuicui, Yin, Jianbo, Wang, Sheng, Chen, Qing, Tenne, Reshef, Zak, Alla, Guo, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474805/
https://www.ncbi.nlm.nih.gov/pubmed/36104456
http://dx.doi.org/10.1038/s41467-022-33118-x
_version_ 1784789768042708992
author Sun, Yan
Xu, Shuting
Xu, Zheqi
Tian, Jiamin
Bai, Mengmeng
Qi, Zhiying
Niu, Yue
Aung, Hein Htet
Xiong, Xiaolu
Han, Junfeng
Lu, Cuicui
Yin, Jianbo
Wang, Sheng
Chen, Qing
Tenne, Reshef
Zak, Alla
Guo, Yao
author_facet Sun, Yan
Xu, Shuting
Xu, Zheqi
Tian, Jiamin
Bai, Mengmeng
Qi, Zhiying
Niu, Yue
Aung, Hein Htet
Xiong, Xiaolu
Han, Junfeng
Lu, Cuicui
Yin, Jianbo
Wang, Sheng
Chen, Qing
Tenne, Reshef
Zak, Alla
Guo, Yao
author_sort Sun, Yan
collection PubMed
description Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of superlubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory. A complete “four-in-one” artificial vision system that synchronously achieves full functions of detecting, processing, memorizing, and powering is integrated into the nanotube devices. Both labeled supervised learning and unlabeled reinforcement learning algorithms are executable in the artificial vision system to achieve self-driven image recognition. This work provides a distinct strategy to create ferroelectricity in van der Waals materials, and demonstrates how intelligent materials can push electronic system integration at the material level.
format Online
Article
Text
id pubmed-9474805
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-94748052022-09-16 Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system Sun, Yan Xu, Shuting Xu, Zheqi Tian, Jiamin Bai, Mengmeng Qi, Zhiying Niu, Yue Aung, Hein Htet Xiong, Xiaolu Han, Junfeng Lu, Cuicui Yin, Jianbo Wang, Sheng Chen, Qing Tenne, Reshef Zak, Alla Guo, Yao Nat Commun Article Intelligent materials with adaptive response to external stimulation lay foundation to integrate functional systems at the material level. Here, with experimental observation and numerical simulation, we report a delicate nano-electro-mechanical-opto-system naturally embedded in individual multiwall tungsten disulfide nanotubes, which generates a distinct form of in-plane van der Waals sliding ferroelectricity from the unique combination of superlubricity and piezoelectricity. The sliding ferroelectricity enables programmable photovoltaic effect using the multiwall tungsten disulfide nanotube as photovoltaic random-access memory. A complete “four-in-one” artificial vision system that synchronously achieves full functions of detecting, processing, memorizing, and powering is integrated into the nanotube devices. Both labeled supervised learning and unlabeled reinforcement learning algorithms are executable in the artificial vision system to achieve self-driven image recognition. This work provides a distinct strategy to create ferroelectricity in van der Waals materials, and demonstrates how intelligent materials can push electronic system integration at the material level. Nature Publishing Group UK 2022-09-14 /pmc/articles/PMC9474805/ /pubmed/36104456 http://dx.doi.org/10.1038/s41467-022-33118-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sun, Yan
Xu, Shuting
Xu, Zheqi
Tian, Jiamin
Bai, Mengmeng
Qi, Zhiying
Niu, Yue
Aung, Hein Htet
Xiong, Xiaolu
Han, Junfeng
Lu, Cuicui
Yin, Jianbo
Wang, Sheng
Chen, Qing
Tenne, Reshef
Zak, Alla
Guo, Yao
Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
title Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
title_full Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
title_fullStr Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
title_full_unstemmed Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
title_short Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
title_sort mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474805/
https://www.ncbi.nlm.nih.gov/pubmed/36104456
http://dx.doi.org/10.1038/s41467-022-33118-x
work_keys_str_mv AT sunyan mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT xushuting mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT xuzheqi mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT tianjiamin mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT baimengmeng mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT qizhiying mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT niuyue mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT aungheinhtet mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT xiongxiaolu mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT hanjunfeng mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT lucuicui mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT yinjianbo mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT wangsheng mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT chenqing mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT tennereshef mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT zakalla mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem
AT guoyao mesoscopicslidingferroelectricityenabledphotovoltaicrandomaccessmemoryformateriallevelartificialvisionsystem