Cargando…
Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image
Recently, the scenes in large high-resolution remote sensing (HRRS) datasets have been classified using convolutional neural network (CNN)-based methods. Such methods are well-suited for spatial feature extraction and can classify images with relatively high accuracy. However, CNNs do not adequately...
Autores principales: | Guo, Jingxia, Jia, Nan, Bai, Jinniu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9474818/ https://www.ncbi.nlm.nih.gov/pubmed/36104442 http://dx.doi.org/10.1038/s41598-022-19831-z |
Ejemplares similares
-
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
por: Li, Linyi, et al.
Publicado: (2017) -
CAW: A Remote-Sensing Scene Classification Network Aided by Local Window Attention
por: Wang, Wei, et al.
Publicado: (2022) -
CLRS: Continual Learning Benchmark for Remote Sensing Image Scene Classification
por: Li, Haifeng, et al.
Publicado: (2020) -
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015)