Cargando…
Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma
Multi-omics data are increasingly being gathered for investigations of complex diseases such as cancer. However, high dimensionality, small sample size, and heterogeneity of different omics types pose huge challenges to integrated analysis. In this paper, we evaluate two network-based approaches for...
Autores principales: | Wang, Conghao, Lue, Wu, Kaalia, Rama, Kumar, Parvin, Rajapakse, Jagath C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475034/ https://www.ncbi.nlm.nih.gov/pubmed/36104347 http://dx.doi.org/10.1038/s41598-022-19019-5 |
Ejemplares similares
-
Deep learning and multi-omics approach to predict drug responses in cancer
por: Wang, Conghao, et al.
Publicado: (2022) -
Refining modules to determine functionally significant clusters in molecular networks
por: Kaalia, Rama, et al.
Publicado: (2019) -
Functional homogeneity and specificity of topological modules in human proteome
por: Kaalia, Rama, et al.
Publicado: (2019) -
GO2Vec: transforming GO terms and proteins to vector representations via graph embeddings
por: Zhong, Xiaoshi, et al.
Publicado: (2020) -
Combining Neuroimaging and Omics Datasets for Disease Classification Using Graph Neural Networks
por: Chan, Yi Hao, et al.
Publicado: (2022)