Cargando…
Overcoming the strength–formability trade-off in high strength steels via cryogenic treatment
High strength steels are becoming more important than ever before for automotive applications to reduce the weight of automobiles and to ensure the safety of passengers. Since increased strength usually results in degraded formability, however, cold forming of high strength steels into final shapes...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475042/ https://www.ncbi.nlm.nih.gov/pubmed/36104460 http://dx.doi.org/10.1038/s41598-022-19521-w |
Sumario: | High strength steels are becoming more important than ever before for automotive applications to reduce the weight of automobiles and to ensure the safety of passengers. Since increased strength usually results in degraded formability, however, cold forming of high strength steels into final shapes remains a challenge to both automotive manufacturers and suppliers. Here we report novel alloy and processing design concepts that can impart high strength to cold-formable steels, which deviates from the traditional approach of improving the formability of high strength steels. Such designed steel subjected to a designed processing route shows an excellent combination of formability and strength as well as crashworthiness, which is crucial for the safety of passengers in the automobiles. The alloy and processing design concepts used in the present study are based on the utilization of thermally induced austenite to martensite transformation, which imparts high strength to cold-formable austenite by cryogenic treatment. |
---|