Cargando…
A 3D reconstruction based on an unsupervised domain adaptive for binocular endoscopy
In minimally invasive surgery, endoscopic image quality plays a crucial role in surgery. Aiming at the lack of a real parallax in binocular endoscopic images, this article proposes an unsupervised adaptive neural network. The network combines adaptive smoke removal, depth estimation of binocular end...
Autores principales: | Zhang, Guo, Huang, Zhiwei, Lin, Jinzhao, Li, Zhangyong, Cao, Enling, Pang, Yu, sun, Weiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475117/ https://www.ncbi.nlm.nih.gov/pubmed/36117683 http://dx.doi.org/10.3389/fphys.2022.994343 |
Ejemplares similares
-
COVID-19 CT image segmentation method based on swin transformer
por: Sun, Weiwei, et al.
Publicado: (2022) -
Stable Median Centre Clustering for Unsupervised Domain Adaptation Person Re-Identification
por: Guo, Jifeng, et al.
Publicado: (2021) -
Real-Time Dense Reconstruction with Binocular Endoscopy Based on StereoNet and ORB-SLAM
por: Huo, Jiayi, et al.
Publicado: (2023) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
Unsupervised 3D Reconstruction with Multi-Measure and High-Resolution Loss
por: Zheng, Yijie, et al.
Publicado: (2022)