Cargando…
N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
Medical image segmentation is an essential component of computer-aided diagnosis (CAD) systems. Thyroid nodule segmentation using ultrasound images is a necessary step for the early diagnosis of thyroid diseases. An encoder-decoder based deep convolutional neural network (DCNN), like U-Net architect...
Autores principales: | Nie, Xingqing, Zhou, Xiaogen, Tong, Tong, Lin, Xingtao, Wang, Luoyan, Zheng, Haonan, Li, Jing, Xue, Ensheng, Chen, Shun, Zheng, Meijuan, Chen, Cong, Du, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475170/ https://www.ncbi.nlm.nih.gov/pubmed/36117632 http://dx.doi.org/10.3389/fnins.2022.872601 |
Ejemplares similares
-
Corrigendum: N-Net: A novel dense fully convolutional neural network for thyroid nodule segmentation
por: Nie, Xingqing, et al.
Publicado: (2022) -
A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
por: Wang, Luoyan, et al.
Publicado: (2022) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
Recovery of Ionospheric Signals Using Fully Convolutional DenseNet and Its Challenges
por: Mendoza, Merlin M., et al.
Publicado: (2021) -
DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images
por: Yuan, Wenwen, et al.
Publicado: (2022)