Cargando…
Surface-Coated Cerium Nanoparticles to Improve Chemotherapeutic Delivery to Tumor Cells
[Image: see text] The antioxidant property of cerium oxide nanoparticles has increased their demand as a nanocarrier to improve the delivery and therapeutic efficacy of anticancer drugs. Here, we report the synthesis of alginate-coated ceria nanoformulations (ceria NPs) and characterization using FT...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476200/ https://www.ncbi.nlm.nih.gov/pubmed/36120021 http://dx.doi.org/10.1021/acsomega.2c00062 |
Sumario: | [Image: see text] The antioxidant property of cerium oxide nanoparticles has increased their demand as a nanocarrier to improve the delivery and therapeutic efficacy of anticancer drugs. Here, we report the synthesis of alginate-coated ceria nanoformulations (ceria NPs) and characterization using FTIR spectroscopy, Raman microscopy, and X-ray diffraction. The synthesized ceria NPs show negligible inherent in vitro toxicity when tested on a MDA-MB-231 breast cancer cell line at higher particle concentrations. Upon loading these particles with doxorubicin (Dox) and paclitaxel (PTX) drugs, we observe a potential synergistic cytotoxic effect mediated by the drug and the ceria NPs, resulting in the better killing capacity as well as suppression of cell migration against the MDA-MB-231 cell line. Further, to verify the immune-escaping capacity before targeting cancer cells, we coated the drug-loaded ceria NPs with the membrane of MDA-MB-231 cells using an extrusion method. The resultant delivery system exhibited in vitro preferential uptake by the MDA-MB-231 cell line and showed reduced uptake by the murine macrophage cell line (RAW 264.7), assigning its potential application as non-immunogenic personalized therapy in targeting and killing of cancer cells. |
---|