Cargando…

Ultrasensitive monitoring of SARS-CoV-2-specific antibody responses based on a digital approach reveals one week of IgG seroconversion

COVID-19 is still unfolding, while many people have been vaccinated. In comparison to nucleic acid testing (NAT), antibody-based immunoassays are faster and more convenient. However, its application has been hampered by its lower sensitivity and the existing fact that by traditional immunoassays, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ou, Feiyang, Lai, Danyun, Kuang, Xiaojun, He, Ping, Li, Yang, Jiang, He-wei, Liu, Wei, Wei, Hongping, Gu, Hongchen, Ji, Yuan qiao, Xu, Hong, Tao, Sheng-ce
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476360/
https://www.ncbi.nlm.nih.gov/pubmed/36174360
http://dx.doi.org/10.1016/j.bios.2022.114710
Descripción
Sumario:COVID-19 is still unfolding, while many people have been vaccinated. In comparison to nucleic acid testing (NAT), antibody-based immunoassays are faster and more convenient. However, its application has been hampered by its lower sensitivity and the existing fact that by traditional immunoassays, the measurable seroconversion time of pathogen-specific antibodies, such as IgM or IgG, lags far behind that of nucleic acids. Herein, by combining the single molecule array platform (Simoa), RBD, and a previously identified SARS-CoV-2 S2 protein derivatized 12-aa peptide (S2-78), we developed and optimized an ultrasensitive assay (UIM-COVID-19 assay). Sera collected from three sources were tested, i.e., convalescents, inactivated virus vaccine-immunized donors and wild-type authentic SARS-CoV-2-infected rhesus monkeys. The sensitivities of UIM-COVID-19 assays are 100–10,000 times higher than those of conventional flow cytometry, which is a relatively sensitive detection method at present. For the established UIM-COVID-19 assay using RBD as a probe, the IgG and IgM seroconversion times after vaccination were 7.5 and 8.6 days vs. 21.4 and 24 days for the flow cytometry assay, respectively. In addition, using S2-78 as a probe, the UIM-COVID-19 assay could differentiate COVID-19 patients (convalescents) from healthy people and patients with other diseases, with AUCs ranging from 0.85–0.95. In summary, the UIM-COVID-19 we developed here is a promising ultrasensitive biodetection strategy that has the potential to be applied for both immunological studies and diagnostics.