Cargando…
Machine learning for identification of silylated derivatives from mass spectra
MOTIVATION: Compound structure identification is using increasingly more sophisticated computational tools, among which machine learning tools are a recent addition that quickly gains in importance. These tools, of which the method titled Compound Structure Identification:Input Output Kernel Regress...
Autores principales: | Ljoncheva, Milka, Stepišnik, Tomaž, Kosjek, Tina, Džeroski, Sašo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476372/ https://www.ncbi.nlm.nih.gov/pubmed/36109826 http://dx.doi.org/10.1186/s13321-022-00636-1 |
Ejemplares similares
-
GC-EI-MS datasets of trimethylsilyl (TMS) and tert-butyl dimethyl silyl (TBDMS) derivatives for development of machine learning-based compound identification approaches
por: Ljoncheva, Milka, et al.
Publicado: (2023) -
Machine-learning ready data on the thermal power consumption of the Mars Express Spacecraft
por: Petković, Matej, et al.
Publicado: (2022) -
Machine learning-ready remote sensing data for Maya archaeology
por: Kokalj, Žiga, et al.
Publicado: (2023) -
Identification of metabolites from tandem mass spectra with a machine learning approach utilizing structural features
por: Li, Yuanyue, et al.
Publicado: (2020) -
Learning stochastic process-based models of dynamical systems from knowledge and data
por: Tanevski, Jovan, et al.
Publicado: (2016)