Cargando…
Development of novel antiviral nanofinishes for bioactive textiles
Virus-caused public health outbreaks represent a serious threat to humans all over the world. The rampant new 2019 coronavirus (SARS-CoV-2) has wreaked havoc on China and the rest of the world since December 2019. Now focus is on effective reduction of corona and other viral and bacterial infections...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476414/ https://www.ncbi.nlm.nih.gov/pubmed/36124084 http://dx.doi.org/10.1007/s00289-022-04461-2 |
Sumario: | Virus-caused public health outbreaks represent a serious threat to humans all over the world. The rampant new 2019 coronavirus (SARS-CoV-2) has wreaked havoc on China and the rest of the world since December 2019. Now focus is on effective reduction of corona and other viral and bacterial infections in hospitals, public and private sectors, households, schools, etc. Metal and metal oxide nanoparticles, carbon nanotubes, heterostructures, patterned surfaces, and graphene-based materials have shown up to 99.9998% efficacy against bacteria, mold, and viruses. The stability, long shelf life, and robustness of inorganic nanoparticles make them desirable for antimicrobial nanofinishes. These inorganic antimicrobial agents are more stable than organic antibacterial compounds at high temperature and pressure. The high specific surface area-to-volume ratios and unique physicochemical characteristics of nanoparticles are largely responsible for their antibacterial actions. But their immobilization is a huge challenge. To address this issue, NPs were modified with (glycidoxypropyl) trimethoxysilane (GPTS) and applied on cotton fabric. The silane part of GPTS reacted with the NPs under acidic conditions while epoxy reacted with cotton under alkaline conditions. Treated cotton fabric showed good antiviral and antibacterial activity even after severe industrial washing. GRAPHICAL ABSTRACT: [Image: see text] |
---|