Cargando…
High water-soluble curcuminoids-rich extract regulates osteogenic differentiation of MC3T3-E1 cells: Involvement of Wnt/β-catenin and BMP signaling pathway
OBJECTIVE: The present study aimed to evaluate the effect of a high water-soluble curcuminoids-rich extract (CRE) in a solid dispersion form (CRE-SD) using polyvinylpyrrolidone K30 on osteogenic induction of MC3T3-E1 cells. METHODS: CRE was pre-purified using a microwave assisted extraction couple w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476497/ https://www.ncbi.nlm.nih.gov/pubmed/36119369 http://dx.doi.org/10.1016/j.chmed.2021.01.003 |
Sumario: | OBJECTIVE: The present study aimed to evaluate the effect of a high water-soluble curcuminoids-rich extract (CRE) in a solid dispersion form (CRE-SD) using polyvinylpyrrolidone K30 on osteogenic induction of MC3T3-E1 cells. METHODS: CRE was pre-purified using a microwave assisted extraction couple with a Diaion® HP-20 column chromatography. The osteoblastic cell proliferation and differentiation potentials of CRE-SD in MC3T3-E1 cells were tested by cell viability, alkaline phosphatase (ALP) activity, and Alizarin red S activity assays. The mRNA expressions of osteoblast-specific genes and underline mechanisms were assessed by a real time PCR and western blot analysis. RESULTS: CRE-SD 50 µg/mL increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts in both MC3T3-E1 cells and non-osteogenic mouse pluripotent cell line, C3H10T1/2, indicating the action of CRE-SD was not cell-type specific. Alizarin red S activity showed a significant amount of calcium deposition in cells treated with CRE-SD. CRE-SD also upregulated the mRNA expression levels of transcription factors that favor osteoblast differentiation including Bmp-2, Runx2 and Collagen 1a, in a dose dependent manner. Western blot analysis revealed that noggin attenuated CRE-SD-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt/β-catenin signaling pathway also annulled the influence of CRE-SD, indicating Wnt/β-catenin dependent activity. Inhibition of the different signaling pathways abolished the influence of CRE-SD on ALP activity, confirming that CRE-SD induced MC3T3-E1 cells into osteoblasts through Wnt/β-catenin and BMP signaling pathway. CONCLUSION: These results collectively demonstrate that CRE-SD may be a potential therapeutic agent for the treatment of osteoporosis. |
---|