Cargando…
Study on the Preparation of Nano-FeS Loaded on Fly Ash and Its Cr Removal Performance
[Image: see text] Chromium has been considered as one of the most hazardous heavy metals because of its strong and persistent toxicity to the ecosystem and human beings. In this study, fly ash-loaded nano-FeS (nFeS-F) composites were constructed with fly ash as the carrier, and the performance and m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476507/ https://www.ncbi.nlm.nih.gov/pubmed/36119996 http://dx.doi.org/10.1021/acsomega.2c03699 |
Sumario: | [Image: see text] Chromium has been considered as one of the most hazardous heavy metals because of its strong and persistent toxicity to the ecosystem and human beings. In this study, fly ash-loaded nano-FeS (nFeS-F) composites were constructed with fly ash as the carrier, and the performance and mechanism of the composites for the removal of Cr(VI) and total chromium from water were investigated. The composite was characterized by X-ray diffraction and transmission electron microscopy. The effects of fly ash size, molarity of FeSO(4), and flow rate of FeSO(4) solution on the removal of Cr(VI) and total chromium were investigated by a single factor experiment. The interaction of various factors was studied by the Box-Behnken response surface methodology. The optimum conditions of removal of Cr(VI)and total chromium by nFeS-F were determined. The results show that ① the optimal preparation conditions for nFeS-F were an FeSO(4) concentration of 0.45 mol/L, a fly ash particle size of 120–150 mesh, and a flow rate of 0.43 mL/s.② The response surface model provides reliable predictions for the removal efficiencies of Cr(VI) and total chromium.③ The removal efficiencies of Cr(VI) and total chromium were 92.87 and 83.53%, respectively, under the optimal preparation conditions by the experimental test. This study provides an effective method for the removal of Cr(VI) and total chromium. |
---|