Cargando…
Construction of a Deep Neural Network Energy Function for Protein Physics
[Image: see text] The traditional approach of computational biology consists of calculating molecule properties by using approximate classical potentials. Interactions between atoms are described by an energy function derived from physical principles or fitted to experimental data. Their functional...
Autores principales: | Yang, Huan, Xiong, Zhaoping, Zonta, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476656/ https://www.ncbi.nlm.nih.gov/pubmed/35939398 http://dx.doi.org/10.1021/acs.jctc.2c00069 |
Ejemplares similares
-
Improved Giza pyramids construction algorithm for Modify the deep neural network-based method for energy demand forecasting
por: Wang, Xue, et al.
Publicado: (2023) -
Construction of Game Model between Carbon Emission Minimization and Energy and Resource Economy Maximization Based on Deep Neural Network
por: Ma, Lan, et al.
Publicado: (2022) -
Deep physical neural networks trained with backpropagation
por: Wright, Logan G., et al.
Publicado: (2022) -
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023) -
Construction and Evaluation of Intelligent Medical Diagnosis Model Based on Integrated Deep Neural Network
por: Ma, Lina, et al.
Publicado: (2021)