Cargando…

Printed Stretchable Graphene Conductors for Wearable Technology

[Image: see text] Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adju...

Descripción completa

Detalles Bibliográficos
Autores principales: van Hazendonk, Laura S., Pinto, Artur M., Arapov, Kirill, Pillai, Nikhil, Beurskens, Michiel R. C., Teunissen, Jean-Pierre, Sneck, Asko, Smolander, Maria, Rentrop, Corne H. A., Bouten, Piet C. P., Friedrich, Heiner
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477090/
https://www.ncbi.nlm.nih.gov/pubmed/36117880
http://dx.doi.org/10.1021/acs.chemmater.2c02007
_version_ 1784790280630697984
author van Hazendonk, Laura S.
Pinto, Artur M.
Arapov, Kirill
Pillai, Nikhil
Beurskens, Michiel R. C.
Teunissen, Jean-Pierre
Sneck, Asko
Smolander, Maria
Rentrop, Corne H. A.
Bouten, Piet C. P.
Friedrich, Heiner
author_facet van Hazendonk, Laura S.
Pinto, Artur M.
Arapov, Kirill
Pillai, Nikhil
Beurskens, Michiel R. C.
Teunissen, Jean-Pierre
Sneck, Asko
Smolander, Maria
Rentrop, Corne H. A.
Bouten, Piet C. P.
Friedrich, Heiner
author_sort van Hazendonk, Laura S.
collection PubMed
description [Image: see text] Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20–50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω □(–1) mil(–1). Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω □(–1) mil(–1), with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.
format Online
Article
Text
id pubmed-9477090
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-94770902022-09-16 Printed Stretchable Graphene Conductors for Wearable Technology van Hazendonk, Laura S. Pinto, Artur M. Arapov, Kirill Pillai, Nikhil Beurskens, Michiel R. C. Teunissen, Jean-Pierre Sneck, Asko Smolander, Maria Rentrop, Corne H. A. Bouten, Piet C. P. Friedrich, Heiner Chem Mater [Image: see text] Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20–50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω □(–1) mil(–1). Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω □(–1) mil(–1), with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope. American Chemical Society 2022-08-29 2022-09-13 /pmc/articles/PMC9477090/ /pubmed/36117880 http://dx.doi.org/10.1021/acs.chemmater.2c02007 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle van Hazendonk, Laura S.
Pinto, Artur M.
Arapov, Kirill
Pillai, Nikhil
Beurskens, Michiel R. C.
Teunissen, Jean-Pierre
Sneck, Asko
Smolander, Maria
Rentrop, Corne H. A.
Bouten, Piet C. P.
Friedrich, Heiner
Printed Stretchable Graphene Conductors for Wearable Technology
title Printed Stretchable Graphene Conductors for Wearable Technology
title_full Printed Stretchable Graphene Conductors for Wearable Technology
title_fullStr Printed Stretchable Graphene Conductors for Wearable Technology
title_full_unstemmed Printed Stretchable Graphene Conductors for Wearable Technology
title_short Printed Stretchable Graphene Conductors for Wearable Technology
title_sort printed stretchable graphene conductors for wearable technology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477090/
https://www.ncbi.nlm.nih.gov/pubmed/36117880
http://dx.doi.org/10.1021/acs.chemmater.2c02007
work_keys_str_mv AT vanhazendonklauras printedstretchablegrapheneconductorsforwearabletechnology
AT pintoarturm printedstretchablegrapheneconductorsforwearabletechnology
AT arapovkirill printedstretchablegrapheneconductorsforwearabletechnology
AT pillainikhil printedstretchablegrapheneconductorsforwearabletechnology
AT beurskensmichielrc printedstretchablegrapheneconductorsforwearabletechnology
AT teunissenjeanpierre printedstretchablegrapheneconductorsforwearabletechnology
AT sneckasko printedstretchablegrapheneconductorsforwearabletechnology
AT smolandermaria printedstretchablegrapheneconductorsforwearabletechnology
AT rentropcorneha printedstretchablegrapheneconductorsforwearabletechnology
AT boutenpietcp printedstretchablegrapheneconductorsforwearabletechnology
AT friedrichheiner printedstretchablegrapheneconductorsforwearabletechnology