Cargando…
Self-supervised learning for modal transfer of brain imaging
Today's brain imaging modality migration techniques are transformed from one modality data in one domain to another. In the specific clinical diagnosis, multiple modal data can be obtained in the same scanning field, and it is more beneficial to synthesize missing modal data by using the divers...
Autores principales: | Cheng, Dapeng, Chen, Chao, Yanyan, Mao, You, Panlu, Huang, Xingdan, Gai, Jiale, Zhao, Feng, Mao, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477095/ https://www.ncbi.nlm.nih.gov/pubmed/36117623 http://dx.doi.org/10.3389/fnins.2022.920981 |
Ejemplares similares
-
Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images
por: Mao, Yanyan, et al.
Publicado: (2022) -
Research on the Modality Transfer Method of Brain Imaging Based on Generative Adversarial Network
por: Cheng, Dapeng, et al.
Publicado: (2021) -
Brain tumor feature extraction and edge enhancement algorithm based on U-Net network
por: Cheng, Dapeng, et al.
Publicado: (2023) -
A Transfer Model Based on Supervised Multi-Layer Dictionary Learning for Brain Tumor MRI Image Recognition
por: Gu, Yi, et al.
Publicado: (2021) -
Supervised SVM Transfer Learning for Modality-Specific Artefact Detection in ECG
por: Moeyersons, Jonathan, et al.
Publicado: (2021)