Cargando…
Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean
Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477243/ https://www.ncbi.nlm.nih.gov/pubmed/36067300 http://dx.doi.org/10.1073/pnas.2200014119 |
_version_ | 1784790314429448192 |
---|---|
author | Saunders, Jaclyn K. McIlvin, Matthew R. Dupont, Chris L. Kaul, Drishti Moran, Dawn M. Horner, Tristan Laperriere, Sarah M. Webb, Eric A. Bosak, Tanja Santoro, Alyson E. Saito, Mak A. |
author_facet | Saunders, Jaclyn K. McIlvin, Matthew R. Dupont, Chris L. Kaul, Drishti Moran, Dawn M. Horner, Tristan Laperriere, Sarah M. Webb, Eric A. Bosak, Tanja Santoro, Alyson E. Saito, Mak A. |
author_sort | Saunders, Jaclyn K. |
collection | PubMed |
description | Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO(2), NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change. |
format | Online Article Text |
id | pubmed-9477243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-94772432023-03-06 Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean Saunders, Jaclyn K. McIlvin, Matthew R. Dupont, Chris L. Kaul, Drishti Moran, Dawn M. Horner, Tristan Laperriere, Sarah M. Webb, Eric A. Bosak, Tanja Santoro, Alyson E. Saito, Mak A. Proc Natl Acad Sci U S A Biological Sciences Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO(2), NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change. National Academy of Sciences 2022-09-06 2022-09-13 /pmc/articles/PMC9477243/ /pubmed/36067300 http://dx.doi.org/10.1073/pnas.2200014119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Saunders, Jaclyn K. McIlvin, Matthew R. Dupont, Chris L. Kaul, Drishti Moran, Dawn M. Horner, Tristan Laperriere, Sarah M. Webb, Eric A. Bosak, Tanja Santoro, Alyson E. Saito, Mak A. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean |
title | Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean |
title_full | Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean |
title_fullStr | Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean |
title_full_unstemmed | Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean |
title_short | Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean |
title_sort | microbial functional diversity across biogeochemical provinces in the central pacific ocean |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477243/ https://www.ncbi.nlm.nih.gov/pubmed/36067300 http://dx.doi.org/10.1073/pnas.2200014119 |
work_keys_str_mv | AT saundersjaclynk microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT mcilvinmatthewr microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT dupontchrisl microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT kauldrishti microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT morandawnm microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT hornertristan microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT laperrieresarahm microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT webberica microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT bosaktanja microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT santoroalysone microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean AT saitomaka microbialfunctionaldiversityacrossbiogeochemicalprovincesinthecentralpacificocean |