Cargando…
Robust and efficient COVID-19 detection techniques: A machine learning approach
The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477266/ https://www.ncbi.nlm.nih.gov/pubmed/36107971 http://dx.doi.org/10.1371/journal.pone.0274538 |
_version_ | 1784790320250093568 |
---|---|
author | Hasan, Md. Mahadi Murtaz, Saba Binte Islam, Muhammad Usama Sadeq, Muhammad Jafar Uddin, Jasim |
author_facet | Hasan, Md. Mahadi Murtaz, Saba Binte Islam, Muhammad Usama Sadeq, Muhammad Jafar Uddin, Jasim |
author_sort | Hasan, Md. Mahadi |
collection | PubMed |
description | The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus. |
format | Online Article Text |
id | pubmed-9477266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94772662022-09-16 Robust and efficient COVID-19 detection techniques: A machine learning approach Hasan, Md. Mahadi Murtaz, Saba Binte Islam, Muhammad Usama Sadeq, Muhammad Jafar Uddin, Jasim PLoS One Research Article The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus. Public Library of Science 2022-09-15 /pmc/articles/PMC9477266/ /pubmed/36107971 http://dx.doi.org/10.1371/journal.pone.0274538 Text en © 2022 Hasan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hasan, Md. Mahadi Murtaz, Saba Binte Islam, Muhammad Usama Sadeq, Muhammad Jafar Uddin, Jasim Robust and efficient COVID-19 detection techniques: A machine learning approach |
title | Robust and efficient COVID-19 detection techniques: A machine learning approach |
title_full | Robust and efficient COVID-19 detection techniques: A machine learning approach |
title_fullStr | Robust and efficient COVID-19 detection techniques: A machine learning approach |
title_full_unstemmed | Robust and efficient COVID-19 detection techniques: A machine learning approach |
title_short | Robust and efficient COVID-19 detection techniques: A machine learning approach |
title_sort | robust and efficient covid-19 detection techniques: a machine learning approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477266/ https://www.ncbi.nlm.nih.gov/pubmed/36107971 http://dx.doi.org/10.1371/journal.pone.0274538 |
work_keys_str_mv | AT hasanmdmahadi robustandefficientcovid19detectiontechniquesamachinelearningapproach AT murtazsababinte robustandefficientcovid19detectiontechniquesamachinelearningapproach AT islammuhammadusama robustandefficientcovid19detectiontechniquesamachinelearningapproach AT sadeqmuhammadjafar robustandefficientcovid19detectiontechniquesamachinelearningapproach AT uddinjasim robustandefficientcovid19detectiontechniquesamachinelearningapproach |