Cargando…
MalFuzz: Coverage-guided fuzzing on deep learning-based malware classification model
With the continuous development of deep learning, more and more domains use deep learning technique to solve key problems. The security issues of deep learning models have also received more and more attention. Nowadays, malware has become a huge security threat in cyberspace. Traditional signature-...
Autores principales: | Liu, Yuying, Yang, Pin, Jia, Peng, He, Ziheng, Luo, Hairu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477281/ https://www.ncbi.nlm.nih.gov/pubmed/36107957 http://dx.doi.org/10.1371/journal.pone.0273804 |
Ejemplares similares
-
Open source fuzzing tools
por: Evron, Gadi, et al.
Publicado: (2007) -
A systematic review of fuzzing based on machine learning techniques
por: Wang, Yan, et al.
Publicado: (2020) -
Effective Fuzzing: From Noise to SIGSEGV
por: Denbow, Shawn
Publicado: (2019) -
Fuzzing: brute force vulnerabilty discovery
por: Sutton, Michael, et al.
Publicado: (2007) -
Fuzzing for software security testing and quality assurance
por: Takanen, Ari, et al.
Publicado: (2018)