Cargando…

Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico

Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to...

Descripción completa

Detalles Bibliográficos
Autores principales: López-Díaz, José Óscar M., Méndez-González, Jorge, López-Serrano, Pablito M., Sánchez-Pérez, Félix de J., Méndez-Encina, Fátima M., Mendieta-Oviedo, Rocío, Sosa-Díaz, Librado, Flores, Andrés, García-Montiel, Emily, Cambrón-Sandoval, Víctor H., Zermeño-González, Alejandro, Corral Rivas, José J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477326/
https://www.ncbi.nlm.nih.gov/pubmed/36108072
http://dx.doi.org/10.1371/journal.pone.0274641
_version_ 1784790335526797312
author López-Díaz, José Óscar M.
Méndez-González, Jorge
López-Serrano, Pablito M.
Sánchez-Pérez, Félix de J.
Méndez-Encina, Fátima M.
Mendieta-Oviedo, Rocío
Sosa-Díaz, Librado
Flores, Andrés
García-Montiel, Emily
Cambrón-Sandoval, Víctor H.
Zermeño-González, Alejandro
Corral Rivas, José J.
author_facet López-Díaz, José Óscar M.
Méndez-González, Jorge
López-Serrano, Pablito M.
Sánchez-Pérez, Félix de J.
Méndez-Encina, Fátima M.
Mendieta-Oviedo, Rocío
Sosa-Díaz, Librado
Flores, Andrés
García-Montiel, Emily
Cambrón-Sandoval, Víctor H.
Zermeño-González, Alejandro
Corral Rivas, José J.
author_sort López-Díaz, José Óscar M.
collection PubMed
description Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to predict dry fiber yield (Dfw) rapidly, simply, and inexpensively. We used a power model in its linear form and bioclimatic areas as dummy variables. Training, generation (80%) and validation (20%) of the model was performed using machine learning with the package ‘caret’ of R. Using canonical correlation analysis (CCA), we evaluated the relationship of Dwf to bioclimatic variables. The principal components analysis (PCA) generated two bioclimatic zones, each with different A. lechuguilla productivities. We evaluated 499 individuals in four states of Mexico. The crown diameter (Cd) of this species adequately predicts its fiber dry weight (R(2) = 0.6327; p < 0.05). The intercept (β(0)), slope [lnCd (β(1))], zone [(β(2))] and interaction [lnCd:Zona (β(3))] of the dummy model was statistically significant (p < 0.05), giving origin to an equation for each bioclimatic zone. The CCA indicates a positive correlation between minimum temperature of the coldest month (Bio 6) and Dwf (r = 0.84 and p < 0.05). In conclusion, because of the decrease in Bio 6 of more than 0.5°C by 2050, the species could be vulnerable to climate change, and A. lechuguilla fiber production could be affected gradually in the coming years.
format Online
Article
Text
id pubmed-9477326
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94773262022-09-16 Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico López-Díaz, José Óscar M. Méndez-González, Jorge López-Serrano, Pablito M. Sánchez-Pérez, Félix de J. Méndez-Encina, Fátima M. Mendieta-Oviedo, Rocío Sosa-Díaz, Librado Flores, Andrés García-Montiel, Emily Cambrón-Sandoval, Víctor H. Zermeño-González, Alejandro Corral Rivas, José J. PLoS One Research Article Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to predict dry fiber yield (Dfw) rapidly, simply, and inexpensively. We used a power model in its linear form and bioclimatic areas as dummy variables. Training, generation (80%) and validation (20%) of the model was performed using machine learning with the package ‘caret’ of R. Using canonical correlation analysis (CCA), we evaluated the relationship of Dwf to bioclimatic variables. The principal components analysis (PCA) generated two bioclimatic zones, each with different A. lechuguilla productivities. We evaluated 499 individuals in four states of Mexico. The crown diameter (Cd) of this species adequately predicts its fiber dry weight (R(2) = 0.6327; p < 0.05). The intercept (β(0)), slope [lnCd (β(1))], zone [(β(2))] and interaction [lnCd:Zona (β(3))] of the dummy model was statistically significant (p < 0.05), giving origin to an equation for each bioclimatic zone. The CCA indicates a positive correlation between minimum temperature of the coldest month (Bio 6) and Dwf (r = 0.84 and p < 0.05). In conclusion, because of the decrease in Bio 6 of more than 0.5°C by 2050, the species could be vulnerable to climate change, and A. lechuguilla fiber production could be affected gradually in the coming years. Public Library of Science 2022-09-15 /pmc/articles/PMC9477326/ /pubmed/36108072 http://dx.doi.org/10.1371/journal.pone.0274641 Text en © 2022 López-Díaz et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
López-Díaz, José Óscar M.
Méndez-González, Jorge
López-Serrano, Pablito M.
Sánchez-Pérez, Félix de J.
Méndez-Encina, Fátima M.
Mendieta-Oviedo, Rocío
Sosa-Díaz, Librado
Flores, Andrés
García-Montiel, Emily
Cambrón-Sandoval, Víctor H.
Zermeño-González, Alejandro
Corral Rivas, José J.
Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
title Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
title_full Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
title_fullStr Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
title_full_unstemmed Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
title_short Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
title_sort dummy regression to predict dry fiber in agave lechuguilla torr. in two large-scale bioclimatic regions in mexico
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477326/
https://www.ncbi.nlm.nih.gov/pubmed/36108072
http://dx.doi.org/10.1371/journal.pone.0274641
work_keys_str_mv AT lopezdiazjoseoscarm dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT mendezgonzalezjorge dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT lopezserranopablitom dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT sanchezperezfelixdej dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT mendezencinafatimam dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT mendietaoviedorocio dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT sosadiazlibrado dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT floresandres dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT garciamontielemily dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT cambronsandovalvictorh dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT zermenogonzalezalejandro dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico
AT corralrivasjosej dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico