Cargando…
Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico
Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477326/ https://www.ncbi.nlm.nih.gov/pubmed/36108072 http://dx.doi.org/10.1371/journal.pone.0274641 |
_version_ | 1784790335526797312 |
---|---|
author | López-Díaz, José Óscar M. Méndez-González, Jorge López-Serrano, Pablito M. Sánchez-Pérez, Félix de J. Méndez-Encina, Fátima M. Mendieta-Oviedo, Rocío Sosa-Díaz, Librado Flores, Andrés García-Montiel, Emily Cambrón-Sandoval, Víctor H. Zermeño-González, Alejandro Corral Rivas, José J. |
author_facet | López-Díaz, José Óscar M. Méndez-González, Jorge López-Serrano, Pablito M. Sánchez-Pérez, Félix de J. Méndez-Encina, Fátima M. Mendieta-Oviedo, Rocío Sosa-Díaz, Librado Flores, Andrés García-Montiel, Emily Cambrón-Sandoval, Víctor H. Zermeño-González, Alejandro Corral Rivas, José J. |
author_sort | López-Díaz, José Óscar M. |
collection | PubMed |
description | Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to predict dry fiber yield (Dfw) rapidly, simply, and inexpensively. We used a power model in its linear form and bioclimatic areas as dummy variables. Training, generation (80%) and validation (20%) of the model was performed using machine learning with the package ‘caret’ of R. Using canonical correlation analysis (CCA), we evaluated the relationship of Dwf to bioclimatic variables. The principal components analysis (PCA) generated two bioclimatic zones, each with different A. lechuguilla productivities. We evaluated 499 individuals in four states of Mexico. The crown diameter (Cd) of this species adequately predicts its fiber dry weight (R(2) = 0.6327; p < 0.05). The intercept (β(0)), slope [lnCd (β(1))], zone [(β(2))] and interaction [lnCd:Zona (β(3))] of the dummy model was statistically significant (p < 0.05), giving origin to an equation for each bioclimatic zone. The CCA indicates a positive correlation between minimum temperature of the coldest month (Bio 6) and Dwf (r = 0.84 and p < 0.05). In conclusion, because of the decrease in Bio 6 of more than 0.5°C by 2050, the species could be vulnerable to climate change, and A. lechuguilla fiber production could be affected gradually in the coming years. |
format | Online Article Text |
id | pubmed-9477326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-94773262022-09-16 Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico López-Díaz, José Óscar M. Méndez-González, Jorge López-Serrano, Pablito M. Sánchez-Pérez, Félix de J. Méndez-Encina, Fátima M. Mendieta-Oviedo, Rocío Sosa-Díaz, Librado Flores, Andrés García-Montiel, Emily Cambrón-Sandoval, Víctor H. Zermeño-González, Alejandro Corral Rivas, José J. PLoS One Research Article Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to predict dry fiber yield (Dfw) rapidly, simply, and inexpensively. We used a power model in its linear form and bioclimatic areas as dummy variables. Training, generation (80%) and validation (20%) of the model was performed using machine learning with the package ‘caret’ of R. Using canonical correlation analysis (CCA), we evaluated the relationship of Dwf to bioclimatic variables. The principal components analysis (PCA) generated two bioclimatic zones, each with different A. lechuguilla productivities. We evaluated 499 individuals in four states of Mexico. The crown diameter (Cd) of this species adequately predicts its fiber dry weight (R(2) = 0.6327; p < 0.05). The intercept (β(0)), slope [lnCd (β(1))], zone [(β(2))] and interaction [lnCd:Zona (β(3))] of the dummy model was statistically significant (p < 0.05), giving origin to an equation for each bioclimatic zone. The CCA indicates a positive correlation between minimum temperature of the coldest month (Bio 6) and Dwf (r = 0.84 and p < 0.05). In conclusion, because of the decrease in Bio 6 of more than 0.5°C by 2050, the species could be vulnerable to climate change, and A. lechuguilla fiber production could be affected gradually in the coming years. Public Library of Science 2022-09-15 /pmc/articles/PMC9477326/ /pubmed/36108072 http://dx.doi.org/10.1371/journal.pone.0274641 Text en © 2022 López-Díaz et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article López-Díaz, José Óscar M. Méndez-González, Jorge López-Serrano, Pablito M. Sánchez-Pérez, Félix de J. Méndez-Encina, Fátima M. Mendieta-Oviedo, Rocío Sosa-Díaz, Librado Flores, Andrés García-Montiel, Emily Cambrón-Sandoval, Víctor H. Zermeño-González, Alejandro Corral Rivas, José J. Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico |
title | Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico |
title_full | Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico |
title_fullStr | Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico |
title_full_unstemmed | Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico |
title_short | Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico |
title_sort | dummy regression to predict dry fiber in agave lechuguilla torr. in two large-scale bioclimatic regions in mexico |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477326/ https://www.ncbi.nlm.nih.gov/pubmed/36108072 http://dx.doi.org/10.1371/journal.pone.0274641 |
work_keys_str_mv | AT lopezdiazjoseoscarm dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT mendezgonzalezjorge dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT lopezserranopablitom dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT sanchezperezfelixdej dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT mendezencinafatimam dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT mendietaoviedorocio dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT sosadiazlibrado dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT floresandres dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT garciamontielemily dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT cambronsandovalvictorh dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT zermenogonzalezalejandro dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico AT corralrivasjosej dummyregressiontopredictdryfiberinagavelechuguillatorrintwolargescalebioclimaticregionsinmexico |