Cargando…

Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization

Thrombin is an enzyme produced during blood coagulation that is crucial to the formation of a stable clot. Thrombin cleaves soluble fibrinogen into fibrin, which polymerizes and forms an insoluble, stabilizing gel around the growing clot. A small fraction of circulating fibrinogen is the variant γ(A...

Descripción completa

Detalles Bibliográficos
Autores principales: Kelley, Michael A., Leiderman, Karin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477365/
https://www.ncbi.nlm.nih.gov/pubmed/36107837
http://dx.doi.org/10.1371/journal.pcbi.1010414
_version_ 1784790345737830400
author Kelley, Michael A.
Leiderman, Karin
author_facet Kelley, Michael A.
Leiderman, Karin
author_sort Kelley, Michael A.
collection PubMed
description Thrombin is an enzyme produced during blood coagulation that is crucial to the formation of a stable clot. Thrombin cleaves soluble fibrinogen into fibrin, which polymerizes and forms an insoluble, stabilizing gel around the growing clot. A small fraction of circulating fibrinogen is the variant γ(A)/γ′, which has been associated with high-affinity thrombin binding and implicated as a risk factor for myocardial infarctions, deep vein thrombosis, and coronary artery disease. Thrombin is also known to be strongly sequestered by polymerized fibrin for extended periods of time in a way that is partially regulated by γ(A)/γ′. However, the role of γ(A)/γ′-thrombin interactions during fibrin polymerization is not fully understood. Here, we present a mathematical model of fibrin polymerization that considered the interactions between thrombin, fibrinogen, and fibrin, including those with γ(A)/γ′. In our model, bivalent thrombin-fibrin binding greatly increased thrombin residency times and allowed for thrombin-trapping during fibrin polymerization. Results from the model showed that early in fibrin polymerization, γ′ binding to thrombin served to localize the thrombin to the fibrin(ogen), which effectively enhanced the enzymatic conversion of fibrinogen to fibrin. When all the fibrin was fully generated, however, the fibrin-thrombin binding persisted but the effect of fibrin on thrombin switched quickly to serve as a sink, essentially removing all free thrombin from the system. This dual role for γ′-thrombin binding during polymerization led to a paradoxical decrease in trapped thrombin as the amount of γ′ was increased. The model highlighted biochemical and biophysical roles for fibrin-thrombin interactions during polymerization and agreed well with experimental observations.
format Online
Article
Text
id pubmed-9477365
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94773652022-09-16 Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization Kelley, Michael A. Leiderman, Karin PLoS Comput Biol Research Article Thrombin is an enzyme produced during blood coagulation that is crucial to the formation of a stable clot. Thrombin cleaves soluble fibrinogen into fibrin, which polymerizes and forms an insoluble, stabilizing gel around the growing clot. A small fraction of circulating fibrinogen is the variant γ(A)/γ′, which has been associated with high-affinity thrombin binding and implicated as a risk factor for myocardial infarctions, deep vein thrombosis, and coronary artery disease. Thrombin is also known to be strongly sequestered by polymerized fibrin for extended periods of time in a way that is partially regulated by γ(A)/γ′. However, the role of γ(A)/γ′-thrombin interactions during fibrin polymerization is not fully understood. Here, we present a mathematical model of fibrin polymerization that considered the interactions between thrombin, fibrinogen, and fibrin, including those with γ(A)/γ′. In our model, bivalent thrombin-fibrin binding greatly increased thrombin residency times and allowed for thrombin-trapping during fibrin polymerization. Results from the model showed that early in fibrin polymerization, γ′ binding to thrombin served to localize the thrombin to the fibrin(ogen), which effectively enhanced the enzymatic conversion of fibrinogen to fibrin. When all the fibrin was fully generated, however, the fibrin-thrombin binding persisted but the effect of fibrin on thrombin switched quickly to serve as a sink, essentially removing all free thrombin from the system. This dual role for γ′-thrombin binding during polymerization led to a paradoxical decrease in trapped thrombin as the amount of γ′ was increased. The model highlighted biochemical and biophysical roles for fibrin-thrombin interactions during polymerization and agreed well with experimental observations. Public Library of Science 2022-09-15 /pmc/articles/PMC9477365/ /pubmed/36107837 http://dx.doi.org/10.1371/journal.pcbi.1010414 Text en © 2022 Kelley, Leiderman https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kelley, Michael A.
Leiderman, Karin
Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
title Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
title_full Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
title_fullStr Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
title_full_unstemmed Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
title_short Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
title_sort mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477365/
https://www.ncbi.nlm.nih.gov/pubmed/36107837
http://dx.doi.org/10.1371/journal.pcbi.1010414
work_keys_str_mv AT kelleymichaela mathematicalmodelingtounderstandtheroleofbivalentthrombinfibrinbindingduringpolymerization
AT leidermankarin mathematicalmodelingtounderstandtheroleofbivalentthrombinfibrinbindingduringpolymerization