Cargando…
Improved runoff forecasting based on time-varying model averaging method and deep learning
In order to improve the accuracy and stability of runoff prediction. This study proposed a dynamic model averaging method with Time-varying weight (TV-DMA). Using this method, an integrated prediction model framework for runoff prediction was constructed. The framework determines the main variables...
Autores principales: | Ran, Jinlou, Cui, Yang, Xiang, Kai, Song, Yuchen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477370/ https://www.ncbi.nlm.nih.gov/pubmed/36108081 http://dx.doi.org/10.1371/journal.pone.0274004 |
Ejemplares similares
-
Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River
por: Xiao, Lu, et al.
Publicado: (2022) -
Integrated prediction of water pollution and risk assessment of water system connectivity based on dynamic model average and model selection criteria
por: Ruan, Jinlou, et al.
Publicado: (2023) -
Deep learning forecasting using time-varying parameters of the SIRD model for Covid-19
por: Bousquet, Arthur, et al.
Publicado: (2022) -
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
por: Lin, Shih-Lin
Publicado: (2021) -
An interpretable time series machine learning method for varying forecast and nowcast lengths in wastewater-based epidemiology
por: Lai, Mallory, et al.
Publicado: (2023)