Cargando…

Pest population dynamics are related to a continental overwintering gradient

Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lawton, Douglas, Huseth, Anders S., Kennedy, George G., Morey, Amy C., Hutchison, William D., Reisig, Dominic D., Dorman, Seth J., Dillard, DeShae, Venette, Robert C., Groves, Russell L., Adamczyk, John J., Barbosa Dos Santos, Izailda, Baute, Tracey, Brown, Sebe, Burkness, Eric, Dean, Ashley, Dively, Galen P., Doughty, Hélène B., Fleischer, Shelby J., Green, Jessica, Greene, Jeremy K., Hamilton, Krista, Hodgson, Erin, Hunt, Thomas, Kerns, David, Leonard, Billy Rogers, Malone, Sean, Musser, Fred, Owens, David, Palumbo, John C., Paula-Moraes, Silvana, Peterson, Julie A., Ramirez, Ricardo, Rondon, Silvia I., Schilder, Tracy L., Seaman, Abby, Spears, Lori, Stewart, Scott D., Taylor, Sally, Towles, Tyler, Welty, Celeste, Whalen, Joanne, Wright, Robert, Zuefle, Marion
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477387/
https://www.ncbi.nlm.nih.gov/pubmed/36067290
http://dx.doi.org/10.1073/pnas.2203230119
_version_ 1784790351177842688
author Lawton, Douglas
Huseth, Anders S.
Kennedy, George G.
Morey, Amy C.
Hutchison, William D.
Reisig, Dominic D.
Dorman, Seth J.
Dillard, DeShae
Venette, Robert C.
Groves, Russell L.
Adamczyk, John J.
Barbosa Dos Santos, Izailda
Baute, Tracey
Brown, Sebe
Burkness, Eric
Dean, Ashley
Dively, Galen P.
Doughty, Hélène B.
Fleischer, Shelby J.
Green, Jessica
Greene, Jeremy K.
Hamilton, Krista
Hodgson, Erin
Hunt, Thomas
Kerns, David
Leonard, Billy Rogers
Malone, Sean
Musser, Fred
Owens, David
Palumbo, John C.
Paula-Moraes, Silvana
Peterson, Julie A.
Ramirez, Ricardo
Rondon, Silvia I.
Schilder, Tracy L.
Seaman, Abby
Spears, Lori
Stewart, Scott D.
Taylor, Sally
Towles, Tyler
Welty, Celeste
Whalen, Joanne
Wright, Robert
Zuefle, Marion
author_facet Lawton, Douglas
Huseth, Anders S.
Kennedy, George G.
Morey, Amy C.
Hutchison, William D.
Reisig, Dominic D.
Dorman, Seth J.
Dillard, DeShae
Venette, Robert C.
Groves, Russell L.
Adamczyk, John J.
Barbosa Dos Santos, Izailda
Baute, Tracey
Brown, Sebe
Burkness, Eric
Dean, Ashley
Dively, Galen P.
Doughty, Hélène B.
Fleischer, Shelby J.
Green, Jessica
Greene, Jeremy K.
Hamilton, Krista
Hodgson, Erin
Hunt, Thomas
Kerns, David
Leonard, Billy Rogers
Malone, Sean
Musser, Fred
Owens, David
Palumbo, John C.
Paula-Moraes, Silvana
Peterson, Julie A.
Ramirez, Ricardo
Rondon, Silvia I.
Schilder, Tracy L.
Seaman, Abby
Spears, Lori
Stewart, Scott D.
Taylor, Sally
Towles, Tyler
Welty, Celeste
Whalen, Joanne
Wright, Robert
Zuefle, Marion
author_sort Lawton, Douglas
collection PubMed
description Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests.
format Online
Article
Text
id pubmed-9477387
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-94773872022-09-16 Pest population dynamics are related to a continental overwintering gradient Lawton, Douglas Huseth, Anders S. Kennedy, George G. Morey, Amy C. Hutchison, William D. Reisig, Dominic D. Dorman, Seth J. Dillard, DeShae Venette, Robert C. Groves, Russell L. Adamczyk, John J. Barbosa Dos Santos, Izailda Baute, Tracey Brown, Sebe Burkness, Eric Dean, Ashley Dively, Galen P. Doughty, Hélène B. Fleischer, Shelby J. Green, Jessica Greene, Jeremy K. Hamilton, Krista Hodgson, Erin Hunt, Thomas Kerns, David Leonard, Billy Rogers Malone, Sean Musser, Fred Owens, David Palumbo, John C. Paula-Moraes, Silvana Peterson, Julie A. Ramirez, Ricardo Rondon, Silvia I. Schilder, Tracy L. Seaman, Abby Spears, Lori Stewart, Scott D. Taylor, Sally Towles, Tyler Welty, Celeste Whalen, Joanne Wright, Robert Zuefle, Marion Proc Natl Acad Sci U S A Biological Sciences Overwintering success is an important determinant of arthropod populations that must be considered as climate change continues to influence the spatiotemporal population dynamics of agricultural pests. Using a long-term monitoring database and biologically relevant overwintering zones, we modeled the annual and seasonal population dynamics of a common pest, Helicoverpa zea (Boddie), based on three overwintering suitability zones throughout North America using four decades of soil temperatures: the southern range (able to persist through winter), transitional zone (uncertain overwintering survivorship), and northern limits (unable to survive winter). Our model indicates H. zea population dynamics are hierarchically structured with continental-level effects that are partitioned into three geographic zones. Seasonal populations were initially detected in the southern range, where they experienced multiple large population peaks. All three zones experienced a final peak between late July (southern range) and mid-August to mid-September (transitional zone and northern limits). The southern range expanded by 3% since 1981 and is projected to increase by twofold by 2099 but the areas of other zones are expected to decrease in the future. These changes suggest larger populations may persist at higher latitudes in the future due to reduced low-temperature lethal events during winter. Because H. zea is a highly migratory pest, predicting when populations accumulate in one region can inform synchronous or lagged population development in other regions. We show the value of combining long-term datasets, remotely sensed data, and laboratory findings to inform forecasting of insect pests. National Academy of Sciences 2022-09-06 2022-09-13 /pmc/articles/PMC9477387/ /pubmed/36067290 http://dx.doi.org/10.1073/pnas.2203230119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Lawton, Douglas
Huseth, Anders S.
Kennedy, George G.
Morey, Amy C.
Hutchison, William D.
Reisig, Dominic D.
Dorman, Seth J.
Dillard, DeShae
Venette, Robert C.
Groves, Russell L.
Adamczyk, John J.
Barbosa Dos Santos, Izailda
Baute, Tracey
Brown, Sebe
Burkness, Eric
Dean, Ashley
Dively, Galen P.
Doughty, Hélène B.
Fleischer, Shelby J.
Green, Jessica
Greene, Jeremy K.
Hamilton, Krista
Hodgson, Erin
Hunt, Thomas
Kerns, David
Leonard, Billy Rogers
Malone, Sean
Musser, Fred
Owens, David
Palumbo, John C.
Paula-Moraes, Silvana
Peterson, Julie A.
Ramirez, Ricardo
Rondon, Silvia I.
Schilder, Tracy L.
Seaman, Abby
Spears, Lori
Stewart, Scott D.
Taylor, Sally
Towles, Tyler
Welty, Celeste
Whalen, Joanne
Wright, Robert
Zuefle, Marion
Pest population dynamics are related to a continental overwintering gradient
title Pest population dynamics are related to a continental overwintering gradient
title_full Pest population dynamics are related to a continental overwintering gradient
title_fullStr Pest population dynamics are related to a continental overwintering gradient
title_full_unstemmed Pest population dynamics are related to a continental overwintering gradient
title_short Pest population dynamics are related to a continental overwintering gradient
title_sort pest population dynamics are related to a continental overwintering gradient
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477387/
https://www.ncbi.nlm.nih.gov/pubmed/36067290
http://dx.doi.org/10.1073/pnas.2203230119
work_keys_str_mv AT lawtondouglas pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT husethanderss pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT kennedygeorgeg pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT moreyamyc pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT hutchisonwilliamd pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT reisigdominicd pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT dormansethj pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT dillarddeshae pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT venetterobertc pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT grovesrusselll pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT adamczykjohnj pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT barbosadossantosizailda pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT bautetracey pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT brownsebe pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT burknesseric pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT deanashley pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT divelygalenp pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT doughtyheleneb pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT fleischershelbyj pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT greenjessica pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT greenejeremyk pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT hamiltonkrista pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT hodgsonerin pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT huntthomas pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT kernsdavid pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT leonardbillyrogers pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT malonesean pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT musserfred pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT owensdavid pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT palumbojohnc pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT paulamoraessilvana pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT petersonjuliea pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT ramirezricardo pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT rondonsilviai pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT schildertracyl pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT seamanabby pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT spearslori pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT stewartscottd pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT taylorsally pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT towlestyler pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT weltyceleste pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT whalenjoanne pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT wrightrobert pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient
AT zueflemarion pestpopulationdynamicsarerelatedtoacontinentaloverwinteringgradient