Cargando…
SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis
The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477415/ https://www.ncbi.nlm.nih.gov/pubmed/36040867 http://dx.doi.org/10.1073/pnas.2204717119 |
_version_ | 1784790357519630336 |
---|---|
author | McGrath, Marisa E. Xue, Yong Dillen, Carly Oldfield, Lauren Assad-Garcia, N. Zaveri, Jayshree Singh, Natasha Baracco, Lauren Taylor, Louis J. Vashee, Sanjay Frieman, Matthew B. |
author_facet | McGrath, Marisa E. Xue, Yong Dillen, Carly Oldfield, Lauren Assad-Garcia, N. Zaveri, Jayshree Singh, Natasha Baracco, Lauren Taylor, Louis J. Vashee, Sanjay Frieman, Matthew B. |
author_sort | McGrath, Marisa E. |
collection | PubMed |
description | The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation. |
format | Online Article Text |
id | pubmed-9477415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-94774152022-09-16 SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis McGrath, Marisa E. Xue, Yong Dillen, Carly Oldfield, Lauren Assad-Garcia, N. Zaveri, Jayshree Singh, Natasha Baracco, Lauren Taylor, Louis J. Vashee, Sanjay Frieman, Matthew B. Proc Natl Acad Sci U S A Biological Sciences The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation. National Academy of Sciences 2022-08-30 2022-09-13 /pmc/articles/PMC9477415/ /pubmed/36040867 http://dx.doi.org/10.1073/pnas.2204717119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences McGrath, Marisa E. Xue, Yong Dillen, Carly Oldfield, Lauren Assad-Garcia, N. Zaveri, Jayshree Singh, Natasha Baracco, Lauren Taylor, Louis J. Vashee, Sanjay Frieman, Matthew B. SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis |
title | SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis |
title_full | SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis |
title_fullStr | SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis |
title_full_unstemmed | SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis |
title_short | SARS-CoV-2 variant spike and accessory gene mutations alter pathogenesis |
title_sort | sars-cov-2 variant spike and accessory gene mutations alter pathogenesis |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477415/ https://www.ncbi.nlm.nih.gov/pubmed/36040867 http://dx.doi.org/10.1073/pnas.2204717119 |
work_keys_str_mv | AT mcgrathmarisae sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT xueyong sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT dillencarly sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT oldfieldlauren sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT assadgarcian sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT zaverijayshree sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT singhnatasha sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT baraccolauren sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT taylorlouisj sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT vasheesanjay sarscov2variantspikeandaccessorygenemutationsalterpathogenesis AT friemanmatthewb sarscov2variantspikeandaccessorygenemutationsalterpathogenesis |